Titre | Manifestation of an enhanced photoreduction of CO2 to CO over the in situ synthesized rGO-covalent organic framework under visible light irradiation |
| |
Auteur | Gopalakrishnan, V N; Nguyen, D-T; Becerra, J; Sakar, M; Ahad, J M E ; Jautzy, J J ; Mindorff, L M; Beland, F; Do, T-O |
Source | ACS Applied Energy Materials vol. 4, issue 6, 2021 p. 6005-6014, https://doi.org/10.1021/acsaem.1c00862 |
Image |  |
Année | 2021 |
Séries alt. | Ressources naturelles Canada, Contribution externe 20210166 |
Éditeur | American Chemical Society |
Document | publication en série |
Lang. | anglais |
DOI | https://doi.org/10.1021/acsaem.1c00862 |
Media | papier; en ligne; numérique |
Formats | pdf; html |
Sujets | Sciences et technologie |
Illustrations | diagrammes; diagrammes; photomicrographies; graphiques |
Programme | Géosciences environnementales Impact environnemental du bitume dilué |
Diffusé | 2021 06 03 |
Résumé | (disponible en anglais seulement) Photocatalytic reduction of CO2 into useful feedstocks has attracted more attention in recent decades. However, the effective and selective conversion of CO2 to
the desired product always remains a major challenge in photocatalysis, which relies on the appropriate band edge potential and efficient separation of photogenerated charge carriers in the photocatalysts. In this direction, herein we report the
construction of a keto-enamine covalent organic framework (COF) incorporated with reduced graphene oxide with increasing concentrations, rGOx@TpPa-1 (x = 5%, 10%, 15%, and 20%), by the in situ assembling technique to significantly boost up the charge
separation thereby to improve the efficiency CO2 photoreduction. The developed rGO15@TpPa-1 nanocomposite showed remarkable efficiencies toward photocatalytic CO2 reduction under visible light irradiation, which yielded the CO at a rate up to ~200
µmol g-1 h-1 and with a selectivity of 89%, which was 1.57 and 6.97 times higher as compared to the bare COF and rGO counterparts, respectively. The series of control experiments demonstrated that both TpPa-1 and rGO counterparts have a significant
synergistic impact on the selectivity and efficiency toward photoreduction of CO2. Under optimized conditions, rGO15@TpPa-1 exhibited an apparent quantum yield of 0.5% at 420 nm, which is one of the few notable values reported in the literature. The
covalent interactions between TpPa-1 and rGO facilitated the formation of band edges with required potential and thereby an improved charge separation along with rapid migration of charge carriers to the surface toward the selective reduction of CO2
to CO, which is validated by the 13C labeling. This work could be a promising approach toward energy applications for the potential development of COFs and their analogous structures. |
Sommaire | (Résumé en langage clair et simple, non publié) En raison des problèmes de conception de catalyseurs efficaces, la production sélective de combustibles et de matières premières à base de
carbone économiquement souhaitables reste un défi pour l'approche durable et carbo-neutre du stockage de l'énergie. En collaboration avec le groupe de recherche du professeur Trong-On Do de l'Université Laval, le Delta-Lab de la CGC-Québec a étudié
des voies de synthèse pour développer un nanocomposite d'oxyde de graphène réduit (rGO) qui améliorerait l'efficacité de la réduction du CO2 en CO à l'aide d'irradiation à la lumière visible (processus nommé photoréduction). Cette étude a démontré
que via un assemblage in situ, le composé hybride manifestait un potentiel favorable pour produire sélectivement du CO, qui est un bloc de construction désirable pour les matières premières à base de carbone, sous un rayonnement du spectre de la
lumière visible. |
GEOSCAN ID | 328595 |
|
|