Titre | Evaluating simulated compact polarimetry for Emergency Geomatics Service flood mapping |
Télécharger | Téléchargements |
| |
Licence | Veuillez noter que la Licence du gouvernement
ouvert - Canada remplace toutes les licences antérieures. |
Auteur | Rainville, T; Olthof, I |
Source | Géomatique Canada, Dossier public 55, 2020, 59p., https://doi.org/10.4095/321454 Accès ouvert |
Image |  |
Année | 2020 |
Éditeur | Ressources naturelles Canada |
Document | dossier public |
Lang. | anglais |
DOI | https://doi.org/10.4095/321454 |
Media | en ligne; numérique |
Formats | pdf |
Sujets | inondations; télédétection; imagerie par satellite; méthodes radar; techniques de cartographie; végétation; eaux de surface; Services d'urgence; Méthodologie; l'apprentissage machine; Intelligence
artificielle; Données géographiques; Couverture du sol; Classification; géophysique; hydrogéologie; Santé et sécurité |
Illustrations | tableaux; croquis cartographiques; graphiques |
Programme | La cartographie thématique |
Diffusé | 2020 01 14 |
Résumé | (disponible en anglais seulement) When severe flooding occurs in Canada, the Emergency Geomatics Service (EGS) is tasked with creating and disseminating maps that depict the flood extent in near
real time. These maps delineate open water and flooded vegetation and are created using a combination of raster image processing, machine learning classification, and threshold-based region growing. The predominant data source used to create these
maps is synthetic aperture radar (SAR) imagery from RADARSAT-2 (R2). With the commissioning phase of the RADARSAT Constellation Mission (RCM) nearing completion, the EGS must adapt its methods for use with what is expected to be the EGS's new default
source of SAR data. The introduction of RCM's circular-transmit linear-receive (CTLR) beam mode provides the option to exploit compact polarimetric (CP) information not previously available through R2. The aim of this study is to determine the most
effective CP parameters for use in mapping open water and flooded vegetation by applying current EGS methodologies, as well as to assess the quality of these products in comparison to products created using R2 data. Nineteen quad-polarization R2
scenes selected from three regions prone to springtime flooding were used to create reference flood maps using current EGS methodologies. These scenes were also used to simulate RCM CP data that included 22 parameters at three different noise floors
and spatial resolutions representative of three RCM beam modes. Using a multi-criteria ranking procedure, CP parameters were ranked in order of importance and entered into a stepwise classification procedure for evaluation against reference R2
products. Results suggest the top four CP parameters - m-chi-volume or m-delta-volume, RR intensity, Shannon Entropy intensity (SEi), and RV intensity - achieved a minimum omission and commission, and maximum agreement with baseline R2 products when
evaluated across all 19 scenes and three beam modes. Separability analyses between manually delineated flooded vegetation polygons and other land cover classes identified four candidate CP parameters - RH intensity, RR intensity, SEi, and the first
Stokes parameter (SV0) - suitable for threshold-based flooded vegetation region growing. Region growing thresholds based on CP values beneath flooded vegetation polygons were found to be dependent on incidence angle for each of these four parameters.
After region growing flooded vegetation using established threshold values for each of the four candidate CP parameters, results were evaluated against flooded vegetation polygons to assess omission error, and against upland land cover to assess
commission error, wherein RH intensity was deemed best to map flooded vegetation. The results of the study are a set of suitable CP parameters to generate flood maps from RCM data using current EGS methodologies that must be verified and validated
further once real RCM data become available. |
Sommaire | (Résumé en langage clair et simple, non publié) Les Services de géomatique d'urgence (SGU) de Ressources naturelles Canada cartographient les inondations à partir d'images satellitaire en
temps quasi réel. Ces cartes permettent aux premiers intervenants de mieux connaître la situation lors d'une inondation. À l'heure actuelle, la principale source d'imagerie utilisée par le SGU à cette fin est acquise par le satellite canadien
Radarsat-2. Alors que Radarsat-2 touche à sa fin, une nouvelle mission permettant la continuité des opérations et l'amélioration des capacités par rapport à Radarsat-2 a été mise en service pour la cartographie des inondations, entre autres
applications. Ce nouveau système appelé Mission Constellation Radarsat (MCR) se compose de trois satellites qui fourniront des observations plus fréquentes que le satellite unique de Radarsat-2. Les caractéristiques techniques différentes du nouveau
satellite ont nécessité un effort de recherche pour permettre au SGU d'adapter ses systèmes de production afin de continuer à générer des cartes d'inondations cohérentes avec celles produites actuellement à partir de Radarsat-2. Cette publication
décrit les mesures prises par le SGU pour adapter les méthodes de cartographie actuelles permettant d'extraire l'information sur les inondations des images Radarsat-2 pour permettre de travailler avec les données MCR en maintenant une précision
comparable ou meilleure. |
GEOSCAN ID | 321454 |
|
|