Titre | Heat flow in the western Arctic Ocean (Amerasian Basin) |
| |
Auteur | Ruppel, C D; Lachenbruch, A H; Hutchinson, D R; Munroe, R J; Mosher, D C |
Source | Journal of Geophysical Research, Solid Earth vol. 124, 2019 p. 1-26, https://doi.org/10.1029/2019JB017587 Accès ouvert |
Image |  |
Année | 2019 |
Séries alt. | Ressources naturelles Canada, Contribution externe 20190159 |
Éditeur | American Geophysical Union (AGU) |
Document | publication en série |
Lang. | anglais |
DOI | https://doi.org/10.1029/2019JB017587 |
Media | papier; en ligne; numérique |
Formats | pdf (Adobe® Reader®); html |
Province | Nunavut; Région extracotière du nord |
Région | Océan Arctique |
Lat/Long OENS | 165.0000 -150.0000 90.0000 69.0000 |
Sujets | océanographie; sédiments marins; turbidites; contourites; dépôts de glissement de terrain; flux thermique; gradients thermique; conductivité thermique; conduction thermique; chaleur radiogénique;
bathymétrie; levés géophysiques; levés sismiques marins; géologie du substratum rocheux; géologie du socle; lithologie; roches ignées; roches volcaniques; volcanoclastique; caractéristiques structurales; failles; caractéristiques sous-marines;
dorsales sous-marines; bassins sédimentaires; croûte océanique; croûte continentale; manteau terrestre; marges continentales; talus continental; réseaux de circulation de l'eau; établissement de modèles; épaisseur de la couverture meuble; Bassin
Amerasien; Bassin de Canada ; Plateau de Chukchi ; dépôts de versants; géologie marine; géologie des dépôts meubles/géomorphologie; géophysique; Sciences et technologie |
Illustrations | cartes de localisation; cartes géolscientiques généralisées; photographies; tableaux; graphiques; graphique à barres; profils sismiques; profils |
Programme | CGC - Bureau de l'Atlantique et de l'ouest du Canada |
Diffusé | 2019 07 10 |
Résumé | (disponible en anglais seulement) From 1963 to 1973 the U.S. Geological Survey measured heat flow at 356 sites in the Amerasian Basin (Western Arctic Ocean) from a drifting ice island (T-3). The
resulting measurements, which are unevenly distributed on Alpha-Mendeleev Ridge and in Canada and Nautilus Basins, greatly expand available heat flow data for the Arctic Ocean. Average T-3 heat flow is ~54.7 ± 11.3 mW/m2, and Nautilus Basin is the
only well?surveyed area (~13% of data) with significantly higher average heat flow (63.8 mW/m2). Heat flow and bathymetry are not correlated at a large scale, and turbiditic surficial sediments (Canada and Nautilus Basins) have higher heat flow than
the sediments that blanket the Alpha-Mendeleev Ridge. Thermal gradients are mostly near-linear, implying that conductive heat transport dominates and that near-seafloor sediments are in thermal equilibrium with overlying bottom waters. Combining the
heat flow data with modern seismic imagery suggests that some of the observed heat flow variability may be explained by local changes in lithology or the presence of basement faults that channel circulating seawater. A numerical model that
incorporates thermal conductivity variations along a profile from Canada Basin (thick sediment on mostly oceanic crust) to Alpha Ridge (thin sediment over thick magmatic units associated with the High Arctic Large Igneous Province) predicts heat flow
slightly lower than that observed on Alpha Ridge. This, along with other observations, implies that circulating fluids modulate conductive heat flow and contribute to high variability in the T-3 data set. |
GEOSCAN ID | 315050 |
|
|