GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreMountain building orogeny in precollision hot backarcs: North American Cordillera, India-Tibet, and Grenville Province
AuteurHyndman, R D
SourceJournal of Geophysical Research, Solid Earth vol. 124, no. 2, 2019 p. 2057-2079, https://doi.org/10.1029/2018JB016697 (Accès ouvert)
Année2019
Séries alt.Ressources naturelles Canada, Contribution externe 20190045
ÉditeurAmerican Geophysical Union (AGU)
Documentpublication en série
Lang.anglais
DOIhttps://doi.org/10.1029/2018JB016697
Mediapapier; en ligne; numérique
Formatspdf (Adobe® Reader®); html
ProvinceTerre-Neuve-et-Labrador; Ontario; Québec; Alberta; Colombie-Britannique; Territoires du Nord-Ouest; Yukon
Sujetsmilieux tectoniques; marges plaques; zones de subduction; orogénies; croûte continentale; déformation; evolution de la croûte; épaisseur de la croûte; métamorphisme; antecedents thermiques; temperature; interprétations géophysiques; interpretations sismiques; Bouclier Canadien; Province de Grenville; géophysique; tectonique; Sciences et technologie; Nature et environnement
Illustrationsschematic cross-sections; schematic models; graphs; models; seismic reflection profiles; geoscientific sketch maps; cross-sections
ProgrammeGestion de programme de l'ouest de la Cordillère, GEM2 : La géocartographie de l'énergie et des minéraux
Diffusé2019 03 25
Résumé(disponible en anglais seulement)
In this article I discuss the new perspectives on continental collisional orogeny from recent evidence that most continental subduction zones have 200- to 1,000-km-wide uniformly hot backarcs. Such hot backarcs are involved in most current and past continental collisions. I give the examples of the current India-Asia and ancient Grenville orogens. (1) In continental collision, at least one side of the closing ocean has a backarc sufficiently hot and weak to be deformed by normal plate driving forces, in contrast to cool stable lithosphere that is too strong. Most deformation is concentrated on the subduction zone side of collision zones. (2) Precollision backarcs are hot enough to generate a ductile detachment in the lower crust, facilitating subsequent thrusting of the incoming stable continent under the upper-middle crust of the backarc. (3) In hot backarcs there is a precollision low-viscosity channel in the lower crust that facilitates lateral flow from beneath collision-generated thickened crust. In continental collision orogenic belts, the high temperatures indicated by ductile deformation, metamorphism, and igneous activity are usually ascribed to heating by the orogenic process. I argue that the primary heat source is the uniformly hot backarc that predates collision. Most continental backarcs have temperatures of 800-850 °C at a 35-km Moho, compared to ~450 °C for normal stable crust, and lithosphere thicknesses of 60-70 km compared to about 200 km. High temperatures that weaken the lithosphere may not be a consequence of orogeny but rather a precollisional requirement for most orogenic deformation and crustal thickening.
Résumé(Résumé en langage clair et simple, non publié)
Le présent article explique le principe de formation des montagnes lorsqu'un océan se ferme et que des continents entrent en collision, en particulier les conséquences de la température élevée et de la faiblesse de la croûte d'un côté de la collision. Par exemple, la collision entre l'Inde et l'Asie et l'ancienne collision survenue il y a 1000 millions d'années qui causé la formation de la Province géologique de Grenville à l'Est de l'Amérique du Nord.
GEOSCAN ID314649