Titre | Characterization of full 3D hydraulic conductivity tensors of hydrostratigraphic units applied to Innisfil Creek watershed, Ontario |
Télécharger | Téléchargement (publication entière) |
| |
Licence | Veuillez noter que la Licence du gouvernement
ouvert - Canada remplace toutes les licences antérieures. |
Auteur | Benoit, N; Marcotte, D; Molson, J W; Pasquier, P; Mulligan, R |
Source | Regional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario geoscientists open house; par Russell, H A J ; Ford, D; Priebe, E H; Holysh, S; Commission géologique du
Canada, Dossier public 8363, 2018 p. 2, https://doi.org/10.4095/306485 Accès ouvert |
Année | 2018 |
Éditeur | Ressources naturelles Canada |
Réunion | Regional-Scale Groundwater Geoscience in Southern Ontario: Open House; Guelph; CA; février 28 - mars 1, 2018 |
Document | dossier public |
Lang. | anglais |
DOI | https://doi.org/10.4095/306485 |
Media | en ligne; numérique |
Référence reliée | Cette publication est contenue dans Regional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario geoscientists open house |
Formats | pdf |
Province | Ontario |
SNRC | 31D/04; 31D/05 |
Région | Innisfil Creek |
Lat/Long OENS | -80.0000 -79.5000 44.3333 44.0000 |
Sujets | eau souterraine; ressources en eau souterraine; aquifères; régimes des eaux souterraines; écoulement de la nappe d'eau souterraine; unités hydrostratigraphiques; géostatistiques; établissement de modèles;
simulations par ordinateur; gestion des ressources; conductivité hydraulique; analyse granulométriques; perméabilité; puits d'eau; Méthodologie; hydrogéologie; géomathématique; stratigraphie; géologie de l'environnement |
Programme | Géoscience des eaux souterraines , Aquifer Assessment & support to mapping |
Diffusé | 2018 02 16 |
Résumé | (disponible en anglais seulement) Variations of hydraulic conductivities (K) in hydrostratigraphic systems may significantly affect the flow velocity field and mass dispersion. Field data used
for assessment of K are generally representative at a local scale only and for one or a few hydrofacies forming a specific hydrostratigraphic unit (HSU). Regional groundwater flow systems encompass a multitude of HSUs, where a given HSU can have
K-range variability spanning several orders of magnitude. Therefore, for regional systems, blocks with respective K-equivalent have to be defined as part of each HSU. A major challenge under such conditions is to determine the spatial distribution of
the full 3D K-tensor blocks (Kb) considering the effect of local scale variability in K. In this study, an efficient method is developed for regional characterization of the HSUs with 3D Kb. The method was tested for the Innisfil Creek watershed. For
each HSU, it consists of the following major steps: (i) assessment of K from measured data; generation of the probability density function of K; definition of the spatial covariance of K; and geostatistical simulation of K at local scale; (ii)
upscaling of the local scale realizations of K into full 3D Kb; definition of the spatial covariance of 3DKb; and definition of spatial distribution of the 3DKb. The preliminary results include a K database built using 1694 grain size analyses, 32
HSU borehole samples and 1086 transmissivity measurements in public wells. The grain size samples were collected by Ontario Geological Survey (OGS) from 15 boreholes in the South Simcoe area. Between 28 and 301 samples/HSU were analysed covering all
of the 14 HSUs observed in the study area. K from grain size analyses were in good agreement with K based on laboratory permeability test measurements of field core. The database was completed with K assessments from specific capacity analyses in
public wells, which have a strong bias from the high permeability formations. To obtain the local scale variability of K, only the results from grain size analyses were used mainly due to their sufficient quantity to define the probability density
function of each HSUs and their results reflecting the expected strong variability of hydrofacies within a given HSU. Local scale K fields were simulated with non-conditional turning band simulation. These results were then upscaled to the block
regional scale. In that regards, we revisited the Zhou et al. (2010) methodology for non-local 3D hydraulic conductivity full tensor upscaling using flow simulator. Preliminary results suggest no correlation between upscaled blocks within the study
area. The upscaling methodology is still in development, upscaling parameters and validation criteria need to be tested. The final outputs of this study will be an ensemble of hydrostratigraphic models with equivalent 3D K-tensor parameters, which
will be used to assess the impact of K and HSU uncertainties on groundwater flow modeling. The proposed methodology is appropriate for characterizing the uncertainty of groundwater flow and transport. For example, it can be used for aquifer
vulnerability assessment and the delineation of wellhead protection areas. |
Sommaire | (Résumé en langage clair et simple, non publié) Compte rendu d'un atelier à Guelph, en Ontario, dans le cadre du programme Échange de ST. Des résumés ont été fournis par la Commission
géologique de l'Ontario, le ministère de l'Environnement et du Changement climatique, les Conservatin Authorities, les universités, le secteur privé, et Unites States Geological Survey. |
GEOSCAN ID | 306485 |
|
|