GEOSCAN, résultats de la recherche


TitreNovel method to predict hypoxia in shallow, complex archipelagoes
TéléchargerTéléchargement (publication entière)
LicenceVeuillez noter que la Licence du gouvernement ouvert - Canada remplace toutes les licences antérieures.
AuteurVirtanen, E; Norkko, A; Viitasalo, M
SourceProgram and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada; par Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; Commission géologique du Canada, Dossier public 8295, 2017 p. 118, (Accès ouvert)
LiensGeoHab 2017
ÉditeurRessources naturelles Canada
Réunion2017 GeoHab: Marine Geological and Biological Habitat Mapping; Dartmouth, NS; CA; mai 1-4, 2017
Documentdossier public
Mediaen ligne; numérique
Référence reliéeCette publication est contenue dans Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; (2017). Program and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada, Commission géologique du Canada, Dossier public 8295
Sujetstechniques de cartographie; océanographie; milieux marins; études côtières; conservation; organismes marins; écologie marine; gestion des ressources; peuplements biologiques; etudes de l'environnement; écosystèmes; benthos; oxygène; topographie du fond océanique; établissement de modèles; biologie; atténuation; géologie marine; géologie des dépôts meubles/géomorphologie; géologie de l'environnement; géophysique; géologie de l'ingénieur
ProgrammeGéoscience en mer, Géoscience de la gestion des océans
Diffusé2017 09 26
Résumé(disponible en anglais seulement)
Hypoxia is a common phenomenon in marine areas characterized by strong water stratification and high organic production. These conditions are common in archipelagoes and estuaries around the world, especially in semi-enclosed marine areas, such as the Baltic Sea, the Black Sea and the Caspian Sea.
In complex archipelagoes, restricted water exchange is one of the main reasons for hypoxia. We tested if hypoxia can be predicted through a limited number of simple topographical features in the marine landscape. We modelled the potential for hypoxic bottoms and hypoxic-prone areas in the northern Baltic Sea, in a complex Finnish archipelago. Hypoxia was largely explained by enclosed topography and limited wave-force.
The modelling results show that large part of the variation of oxygen can be predicted without any knowledge of oceanographic parameters, temperature development, nutrient loading, biological communities, or biogeochemical processes in the sediment. Our model was validated with benthos samples with good results, matching with areas with poor bottom-fauna diversity. Our approach shows that areas prone to hypoxia can be identified by using simple topographic information. The method can also be used to assess where hypoxia is naturally occurring and where it is human-induced, and the potential for occurring in the future if environment resulting in hypoxia changes. Information can be used for deciding where eutrophication mitigation actions should be placed in a cost-effective way.