GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreDevelopment of a new acoustic mapping method for eelgrass using a multi-beam echo-sounder
TéléchargerTéléchargement (publication entière)
AuteurNorton, A R; Dijkstra, S J
SourceProgram and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada; par Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; Commission géologique du Canada, Dossier public 8295, 2017 p. 90, https://doi.org/10.4095/305905 (Accès ouvert)
LiensGeoHab 2017
Année2017
ÉditeurRessources naturelles Canada
Réunion2017 GeoHab: Marine Geological and Biological Habitat Mapping; Dartmouth, NS; CA; mai 1-4, 2017
Documentdossier public
Lang.anglais
DOIhttps://doi.org/10.4095/305905
Mediaen ligne; numérique
Référence reliéeCette publication est contenue dans Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; (2017). Program and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada, Commission géologique du Canada, Dossier public 8295
Formatspdf
Sujetstechniques de cartographie; océanographie; milieux marins; études côtières; conservation; organismes marins; écologie marine; gestion des ressources; peuplements biologiques; etudes de l'environnement; écosystèmes; végétation; interprétations géophysiques; levés acoustiques marins; levés au sonar; photographie; qualité de l'eau; bathymétrie; biologie; traitement des données; géologie marine; géologie des dépôts meubles/géomorphologie; géologie de l'environnement; géophysique
ProgrammeGéoscience de la gestion des océans, Géoscience en mer
Diffusé2017 09 26
Résumé(disponible en anglais seulement)
Eelgrass plays important roles in temperate coastal ecosystems, including as primary producers and as habitat for many species. The distribution and health of eelgrass beds are also sometimes used as a bio-indicator for water quality. The deepest edges of eelgrass beds are especially vulnerable to water quality issues because of the pre-existing light limitation with increasing depth due to natural light attenuation. However, the deep edges of beds are also often the most difficult to delineate with satellite and aerial imagery often used for large-scale seagrass mapping programs; the use of aerial imagery for mapping eelgrass beds is also sometimes hindered by turbidity issues common in estuarine environments. We are in particular developing methods to determine and map the maximum depth limit ('deep edge'), percent cover, functional type (i.e., macroalgae or eelgrass) and canopy height of the beds using water column backscatter data from a multi-beam echo-sounder because these characteristics are difficult to obtain using existing optical and acoustic methods. Water column data was collected using an Odom MB1 sonar in 2014 and 2015 over a variety of vegetated sites in New Hampshire and Massachusetts, selected to represent a range of conditions: dense/sparse eelgrass, long/short eelgrass, mixed macroalgae and eelgrass, eelgrass on muddy or hard substrates, etc. The data processing workflow will look at both echo and terrain characteristics to determine the presence and characteristics of vegetation. In addition to sonar data, drop camera data was collected, and data from a regional aerial mapping program also exist for comparison. Initial data analysis shows good agreement between drop camera and sonar detections, and patches as small as 1m2 and as short as 20 cm are detectable.
GEOSCAN ID305905