GEOSCAN, résultats de la recherche


Titre4D at its highest: interactive and reliable acoustic and optic imagery workflow
TéléchargerTéléchargement (publication entière)
LicenceVeuillez noter que la Licence du gouvernement ouvert - Canada remplace toutes les licences antérieures.
AuteurNeville, D; Febres Urdaneta, D; Malzone, C
SourceProgram and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada; par Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; Commission géologique du Canada, Dossier public 8295, 2017 p. 89, (Accès ouvert)
LiensGeoHab 2017
ÉditeurRessources naturelles Canada
Réunion2017 GeoHab: Marine Geological and Biological Habitat Mapping; Dartmouth, NS; CA; mai 1-4, 2017
Documentdossier public
Mediaen ligne; numérique
Référence reliéeCette publication est contenue dans Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; (2017). Program and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada, Commission géologique du Canada, Dossier public 8295
Sujetstechniques de cartographie; océanographie; milieux marins; études côtières; conservation; organismes marins; écologie marine; gestion des ressources; peuplements biologiques; etudes de l'environnement; écosystèmes; photographie; interprétations géophysiques; levés acoustiques marins; levés au sonar; sonar latéral; bathymétrie; topographie du fond océanique; établissement de modèles; analyse statistique; planification; biologie; traitement des données; méthodologie; géologie marine; géologie des dépôts meubles/géomorphologie; géologie de l'environnement; géophysique
ProgrammeGéoscience en mer, Géoscience de la gestion des océans
Diffusé2017 09 26
Résumé(disponible en anglais seulement)
The evolution of technology allows the collection of ever higher resolution data, which is needed to fully understand our underwater environment. These increased resolutions, and corresponding data sizes, make the combination of technologies and data types more and more difficult. Attempting to work in different software packages with these large datasets can be costly and time consuming, and might include ad hoc methods, that will make results of the process unreliable and not as accurate as the technology evolution promised. For example, for any habitat analysis to be successful and reliable; it needs to follow a rigorous methodology that would support subsequent studies and is easily repeatable.
The use of video and imagery-based data, from camera drops or an ROV/AUV, is becoming a sound source for added value to acoustic surveys, and key for a ground truthing process. We will present a proof of concept workflow for online or post acquisition analysis of video data in combination with high-resolution multi-beam, both bathymetry and backscatter, as well as auxiliary data types. This workflow will be illustrated for different example scenarios, such as quantitative habitat analysis, infrastructure/anthropological structure analysis, and fisheries examples for habitat mapping. Through the application of the interactive 4D visualization and intuitive analysis tools within Fledermaus, we provide a robust and efficient bridge between high volumes of video data, high-resolution bathymetry and backscatter data, and diverse auxiliary data, to enable high precision interpretation and eventing.
The opportunity to work with these data types, merged and time synced, allows further advanced analysis even to quantitative samples, albeit with further increases in data volumes. Our solution overcomes the data volume challenges and maximizes the benefits of using a single stop software package that readily enables the creation of a spatial database model to be exploited for statistical and quantitative analysis. Combining multiple time-sensitive 3D objects into a scene allows discovery and analysis within that environment. This additionally provides insight for any future planning by integrating both the raw survey data and the interpretation of the data at difference user levels.