GEOSCAN, résultats de la recherche


TitreDelineation of significant benthic areas in eastern Canada using kernel density analysis and species distribution models
TéléchargerTéléchargement (publication entière)
LicenceVeuillez noter que la Licence du gouvernement ouvert - Canada remplace toutes les licences antérieures.
AuteurKenchington, E; Beazley, L; Lirette, C; Murillo, F J; Guijarro, J
SourceProgram and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada; par Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; Commission géologique du Canada, Dossier public 8295, 2017 p. 64, (Accès ouvert)
LiensGeoHab 2017
ÉditeurRessources naturelles Canada
Réunion2017 GeoHab: Marine Geological and Biological Habitat Mapping; Dartmouth, NS; CA; mai 1-4, 2017
Documentdossier public
Mediaen ligne; numérique
Référence reliéeCette publication est contenue dans Todd, B J; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; (2017). Program and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada, Commission géologique du Canada, Dossier public 8295
ProvinceRégion extracotière de l'est; Nouveau-Brunswick; Terre-Neuve-et-Labrador; Région extracotière du nord; Nouvelle-Écosse; Île-du-Prince-Édouard; Québec
SNRC1; 2; 3; 10; 11; 12; 13; 14; 15; 20; 21; 22; 24; 25
Lat/Long OENS -72.0000 -48.0000 61.0000 40.0000
Sujetstechniques de cartographie; océanographie; milieux marins; études côtières; conservation; organismes marins; écologie marine; gestion des ressources; peuplements biologiques; etudes de l'environnement; écosystèmes; benthos; établissement de modèles; Coraux; Éponges; biologie; pêcheries; gestion des pêches; politique des pêches; ressources halieutiques
ProgrammeGéoscience en mer, Géoscience de la gestion des océans
Diffusé2017 09 26
Résumé(disponible en anglais seulement)
The Canadian Policy for Managing the Impact of Fishing on Sensitive Benthic Areas developed by the Department of Fisheries and Oceans Canada (DFO) in 2009 defines Significant Benthic Areas in DFO's Ecological Risk Assessment Framework as "significant areas of cold-water corals and sponge dominated communities".
Kernel density estimation (KDE) was applied to research vessel trawl survey data to create modelled biomass surfaces for corals and sponges. From these, an aerial expansion method was applied to identify significant concentrations of these taxa across eastern Canada. The borders of the areas so identified were refined using species distribution models that predict species presence-absence and/or biomass, both incorporating environmental data. We present such predictive models produced using a random forest (RF) machine-learning technique. A suite of between 54 and 78 environmental predictor variables from different data sources were used. Occurrence models performed well in general with cross-validated AUC (Area Under the Receiver Operating Characteristic Curve) values over 0.8 in most of the cases. Biomass models provided diverse results depending of the taxa and region studied. The biomass models were compared with Generalized Additive Models (GAM), which produced comparable results to random forest, although the fewer assumptions required for RF made this method more convenient.
These results have been used to identify significant concentrations of corals and sponges in eastern Canada, an essential first step in the identification of Sensitive Benthic Areas to ensure Canadian fisheries are conducted in a manner that supports marine conservation and sustainable resource use within and outside Canada's 200 nautical mile exclusive economic zone.