GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreGPS phase scintillation at high latitudes during the geomagnetic storm of March 17-18, 2015
AuteurPrikryl, P; Ghoddousi-Fard, R; Connors, M; Weygand, J M; Viljanen, A; Danskin, D W; Jayachandran, P T; Jacobsen, K S; Andalsvik, Y L; Thomas, E G; Ruohoniemi, J M; Durgonics, T; Oksavik, K; Zhang, Y; Spanswick, E; Aquino, M; Sreeja, V
SourceJournal of Geophysical Research vol. 121, 2016., https://doi.org/10.1002/2016JA023171
Année2016
Séries alt.Secteur des sciences de la Terre, Contribution externe 20160133
ÉditeurAmerican Geophysical Union
Documentpublication en série
Lang.anglais
DOIhttps://doi.org/10.1002/2016JA023171
Mediapapier; en ligne; numérique
Formatspdf
Sujetsorages magnétiques; tempêtes; géomagnétisme; ionosphère; magnétomètres; télédétection; zone aurorale; aurores; géophysique
Illustrationslocation maps; graphs; magnetic maps
ProgrammeNord du Canada, risque géoscience, Géoscience pour la sécurité publique
Résumé(disponible en anglais seulement)
Geomagnetic storm of March 17-18, 2015 was caused by impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including Global Navigation Satellite System (GNSS) receivers, HF radars, ionosondes, riometers and magnetometers. The phase scintillation index is computed for L1 signal sampled at the rate of up to 100 Hz by specialized GNSS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, tongue of ionization (TOI) broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density (SED) and in the auroral oval. In particular, in this paper we examine the relation to auroral electrojet currents observed by arrays of ground-based magnetometers, and energetic particle precipitation observed by DMSP satellites. Equivalent ionospheric currents (EICs) are obtained from ground magnetometer data using the spherical elementary currents systems (SECS) technique developed by Amm and Viljanen [1999] that has been applied over the entire North American ground magnetometer network and the International Monitor for Auroral Geomagnetic Effects (IMAGE) network over the Scandinavia. The GNSS phase scintillation mapped to the poleward side of strong westward electrojet and to the edge of the eastward electrojet region. Also, the scintillation was generally collocated with fluxes of energetic electron precipitation observed by DMSP satellites with exception of a period of pulsating aurora when only very weak EICs were observed.
Résumé(Résumé en langage clair et simple, non publié)
La météo spatiale fait référence aux conditions dynamiques du soleil et de l'environnement spatial qui peuvent influer sur les infrastructures essentielles. RNCan exploite le Centre canadien de météo spatiale et étudie les effets de la météo spatiale sur les systèmes d'alimentation électrique, les pipelines, les satellites, les installations de communications radio et le FGISM pour aider l'industrie canadienne à comprendre et à atténuer les effets de la météo spatiale.
GEOSCAN ID299089