GEOSCAN, résultats de la recherche


TitreMagmatic evolution of the Late Devonian Mount Douglas leucogranites, southwestern New Brunswick, Canada; an example of extreme fractional crystallization
TéléchargerTéléchargement (publication entière)
AuteurMohammadi, N; Lentz, D R
SourceTGI 4 - Intrusion Related Mineralisation Project: new vectors to buried porphyry-style mineralisation; par Rogers, N (éd.); Commission géologique du Canada, Dossier public 7843, 2015 p. 547-557,
ÉditeurRessources naturelles Canada
Documentdossier public
Mediaen ligne; numérique
Référence reliéeCette publication est contenue dans Rogers, N; (2015). TGI 4 - Intrusion Related Mineralisation Project: new vectors to buried porphyry-style mineralisation, Commission géologique du Canada, Dossier public 7843
Lat/Long OENS -68.0000 -66.5000 46.0000 45.0000
Sujetsgisements porphyriques; cuivre porphyrique; prospection minière; minéralisation; biotite; granodiorites; leucogranites; gisements minéraux hydrothermaux; altération hydrothermale; tungstène; molybdène; or; antimoine; roches magmatiques; milieux tectoniques; cadre tectonique; évolution tectonique; gîtes granophyriques; analyse par spectromètre de masse; gîtes magmatiques; magmatisme; géologie économique; tectonique; minéralogie; Paléozoïque; Dévonien
Illustrationslocation maps; plots; photomicrographs; ternary diagrams
Bibliothèque de Ressources naturelles Canada - Ottawa (Sciences de la Terre)
ProgrammeÉtude des gîtes porphyriques, Initiative géoscientifique ciblée (IGC-4)
LiensCanadian Database of Geochemical Surveys, downloadable files
LiensBanque de données de levés géochimiques du Canada, fichiers téléchargeables
Diffusé2015 06 11
Résumé(disponible en anglais seulement)
The Late Devonian Mount Douglas intrusive suite (MD, ~600 km2) of southwestern New Brunswick, Canada, eastern part of the Saint George Batholith, is a suite of peraluminous leucogranites extended from Red Rock Lake to Mount Douglas. Extreme fractional crystallization associated with formation of this suite is the most important factor affecting the magmatic evolution, producing three compositionally and chronologically different intrusive units, Dmd1, Dmd2, and Dmd3. Petrochemical data show that the subunits of the Mount Douglas Granite have within-plate geochemical character with evidence of hybrid I- and S-type affinity.
Very low K/Rb (average 102.7), Nb/Ta (? 6.8), and Zr/Hf (? 37.45) ratios in Dmd3 compared to Dmd1 possibly reflect significant involvement of extreme low T crystal fractionation in the last- stages of magmatic differentiation; The continuous variation trends for many major and trace elements (e.g., Zr vs. TiO2, Zr/Hf vs. K/Rb, F vs. K/Rb, and Pb vs. Ba) suggest that probably Dmd2 and Dmd3 were generated by extensive fractionation of the parental Dmd1 magma. Also, normalized to the least-evolved sample of the MG granites (Dmd1), the Dmd3 unit is the most enriched in Rb, Th, U, Ce, Ta, Pb, Nd, Sm, Dy, Y, Yb, and Lu, and depletion of Cs, Ba, Sr, P, Zr, Eu, and Ti content, reflects their production of the same parental magma by crystal fractionation from Dmd1 to Dmd3. A flat "birdwing shape" REE patterns with the most pronounced negative Eu anomalies and the lowest (La/Yb)N (ranging from 1.7-7.4) ratios of Dmd3 show the highly evolved attributes of Dmd3. Calculation of zircon saturation temperatures supports an interpretation of crystal fractionation from Dmd1 to Dmd3. Estimated average temperatures using the bulk rock Zr composition for Dmd1, Dmd2, and Dmd3 range 747-826°C, 733-817°C, and 729-816°C, respectively. All above data suggest that they might have a single genetic group with different fractionation originated from a homogenous parental magma, in which this fractionation increases from the early unit (Dmd1) to the latest unit (Dmd3); significant mineral occurrences, such as Sn, W, and Mo, seem to be mostly associated with the latest and most highly differentiated Dmd3 intrusive phases.