GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreGPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012 - Part 1: The North American sector
AuteurPrikryl, P; Ghoddousi-Fard, R; Thomas, E G; Ruohoniemi, J M; Sheperd, S G; Jayachandran, P T; Danskin, D W; Spanswick, E; Zhang, Y; Jiao, Y; Morton, Y T
SourceAnnales Geophysicae vol. 33, 2015 p. 637-656, https://doi.org/10.5194/angeo-33-637-2015
Année2015
Séries alt.Secteur des sciences de la Terre, Contribution externe 20140371
ÉditeurCopernicus Publications
Documentpublication en série
Lang.anglais
DOIhttps://doi.org/10.5194/angeo-33-637-2015
Mediapapier; numérique; en ligne
Référence reliéeCette publication est reliée à Prikryl, P; Ghoddousi-Fard, R; Spogli, L; Mitchell, C N; Li, G; Ning, B; Cilliers, P J; Sreeja, V; Aquino, M; Terkildsen, M; Jayachandran, P T; Jiao, Y; Morton, Y T; Ruohoniemi, J M; Thomas, E G; Zhang, Y; Weatherwax, A T; Alfonsi, L; De Franceschi, G; Romano, V; (2015). GPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012 - Part 2: Interhemispheric comparison, Annales Geophysicae vol. 33
Formatspdf
Sujetsgéomagnétisme; champs géomagnétiques; variations géomagnétiques; levés scintillométriques; géologie extraterrestre
Illustrationslocation maps; images; plots
ProgrammeNord du Canada, risque géoscience, Géoscience pour la sécurité publique
Résumé(disponible en anglais seulement)
The interval of geomagnetic storms of 7-17 March 2012 was selected at the Climate and Weather of the Sun-Earth System (CAWSES) II Workshop for group study of space weather effects during the ascending phase of Solar Cycle 24 (Tsurutani et al., 2013). High-latitude ionospheric response to a series of storms is studied using arrays of GPS receivers, HF radars, ionosondes, riometers, magnetometers and auroral imagers. Focusing on GPS phase scintillation, the standard deviation of detrended phase, sF, is computed for L1 signal recorded at the rate of 50 Hz by GPS Ionospheric Scintillation and Total electron content (TEC) Monitors (GISTM) of the Canadian High Arctic Ionospheric Network (CHAIN) augmented by GISTMs in Gakona, Alaska. To further extend the geographic coverage, phase scintillation proxy index is obtained from geodetic-quality GPS data sampled at 1 Hz. Ionospheric regions of enhanced scintillation are identified in the context of coupling processes between solar wind and magnetosphere-ionosphere system. As a function of magnetic latitude and magnetic local time, GPS phase scintillation primarily occurs on the dayside in the ionospheric cusp/cleft, the nightside auroral oval, and the polar cap. Scintillation occurrence is correlated with ground magnetic field perturbations and riometer absorption enhancements, and coincident with mapped auroral emissions, including transpolar arcs. On a large scale, ionospheric pierce points of enhanced scintillation are collocated with intense ionospheric convection and with a tongue of ionization (TOI) that is structured into polar patches observed in TEC maps and by ionosondes. Cases of enhanced scintillation in the nightside auroral zone that was preceded by polar cap flow intensifications are observed. During intense geomagnetic storms, the phase scintillation maps to subauroral latitudes at the poleward edge of the main trough where subauroral polarization streams occur.
Résumé(Résumé en langage clair et simple, non publié)
La météo spatiale fait référence aux conditions dynamiques du soleil et de l¿environnement spatial qui peuvent influer sur les infrastructures essentielles. RNCan exploite le Centre canadien de météo spatiale et étudie les effets de la météo spatiale sur les systèmes d¿alimentation électrique, les pipelines, les satellites, les installations de communications radio et le FGISM pour aider l¿industrie canadienne à comprendre et à atténuer les effets de la météo spatiale. La réponse ionosphérique en haut latitude aux tempêtes géomagnétiques est étudié.
GEOSCAN ID295677