Titre | Apatite fission track thermal history analysis of the Beaufort-Mackenzie Basin, Arctic Canada: a natural laboratory for testing multi-kinetic thermal annealing models |
| |
Auteur | Issler, D R ;
Grist, A M |
Source | Thermo 2014, 14th International Conference on Thermochronology, abstract program; 2014 p. 125-126 |
Liens | Online - En ligne
|
Image |  |
Année | 2014 |
Séries alt. | Secteur des sciences de la Terre, Contribution externe 20140016 |
Réunion | Thermo 2014 - 14th International Conference on Thermochronology; Chamonix; FR; Septembre 8-12, 2014 |
Document | livre |
Lang. | anglais |
Media | papier; en ligne; numérique |
Formats | pdf |
Province | Yukon; Territoires du Nord-Ouest |
SNRC | 107; 117 |
Région | Beaufort-Mackenzie Basin |
Lat/Long OENS | -144.0000 -128.0000 72.0000 68.0000 |
Sujets | analyses thermiques; antecedents thermiques; apatite; datations par traces de fission; modèles; établissement de modèles; géochronologie |
Illustrations | cartes de localisation |
Programme | GEM : La géocartographie de l'énergie et des minéraux Corridor et delta du Mackenzie |
Diffusé | 2014 01 01 |
Résumé | (disponible en anglais seulement) The Arctic Beaufort-Mackenzie basin (BMB) is a natural laboratory for testing composition-based apatite fission track (AFT) annealing models because it
comprises compositionally homogeneous Upper Cretaceous-Cenozoic deltaic successions with highly variable heating/cooling histories and long residence times in the AFT partial annealing zone. Sixty AFT (mainly core) samples from 25 wells are available
from Paleogene post-rift (Aklak, Taglu, Richards and Kugmallit sequences), Upper Jurassic-Lower Cretaceous syn-rift (Husky, Martin Creek and Kamik formations), and Devonian pre-rift (Imperial Formation) successions (Figure 1). All major tectonic
elements are sampled, including the western Tertiary fold belt, Tertiary growth faults of the Tarsiut-Amauligak and Taglu fault zones, the Kugmallit Trough (formed by Jurassic-Early Cretaceous rifting), and intact continental crust of the Anderson
Basin to the southeast. Multi-parameter well data (e.g., temperature1, 2, 3, stratigraphy, thermal maturity4 and porosity) were compiled for integrated thermal history analysis as part of a major government-industry funded study of BMB petroleum
systems. Samples collected during the initial phase of the study (generally at low thermal maturity; < 0.5 %Ro) yielded mainly single grain ages that passed the chi-squared test, giving an initial impression of compositionally uniform AFT age
populations. Subsequent sampling from successions with higher thermal maturity (> 0.5 %Ro) yielded many samples with single grain ages that failed the chi-squared test, indicating mixed AFT age populations within samples. Further analysis of single
grain ages using the binomial peak-fitting program (Binomfit) of Mark Brandon (Yale University) suggests that most of the samples have two statistically significant age populations. This interpretation is supported by elemental data and microscopic
observations that show significant variability in elemental abundances and etch figure sizes (Dpar) among apatite grains. The rmr0 parameter6 (based on elemental data) is more successful at defining separate statistical AFT populations with distinct
annealing kinetics than widely used kinetic parameters based on chlorine content or Dpar. Elemental data indicate that most samples have two statistical kinetic populations with different annealing properties that behave as separate
thermochronometers: a fluorine-rich apatite (lower track retentivity) and an iron-rich apatite (higher track retentivity). Low uranium concentrations of apatite grains, rapid exhumation of sediment source areas, and variable degrees of
post-depositional annealing present challenges to defining statistical kinetic populations. However, insight into multi-kinetic annealing is gained by examining the spatial variation in AFT data within a regional thermal maturity framework4, leading
to successful multikinetic thermal models that satisfy available geological constraints. Apatite composition is similar for all Paleogene samples with approximately equal abundances of fluorine-rich and iron-rich apatite. The apparent uniform AFT age
of low maturity samples can be attributed to rapid cooling of apatite source areas and this eliminates variation in detrital provenance age as a factor in modeling. The different kinetic populations within a sample can be modeled using the same
thermal history, indicating that compositionally-related differential annealing is the main factor causing grain age dispersion at higher thermal maturity. The fluorine-rich apatite is more sensitive to the post-depositional thermal history whereas
the iron-rich apatite retains information on the predepositional rapid cooling history of detrital apatite source areas. AFT data from other areas of western and northern Canada suggest that compositional variation in detrital apatite is common and
needs to be considered when undertaking thermochronology studies. |
Sommaire | (Résumé en langage clair et simple, non publié) La thermochronologie par traces de fission sur apatite (TFA) représente une méthode efficace pour la quantification de l'historique thermique
des échantillons de roche. Elle est utile pour l'exploration pétrolière, car elle fournit des données temps température dans la plage de température requise pour la production de pétrole. Le bassin de Beaufort Mackenzie, dans l'Arctique, présente un
ensemble unique d'échantillons d'apatite à composition variable provenant de roches du Paléozoïque, du Mésozoïque et du Cénozoïque qui permettent d'obtenir, grâce à la méthode par TFA, une résolution accrue de l'historique thermique de ce bassin
riche en pétrole. La présentation effectue un survol des méthodes d'interprétation et de modélisation pour le traitement des populations statistiques des grains d'apatite de différentes compositions chimiques, qui servent de « thermochronomètres »
distincts pour limiter certaines parties de l'historique thermique. Les données recueillies par TFA permettent de quantifier le taux, l'ampleur et la chronologie du refroidissement associé à l'érosion profonde de la marge du bassin, ainsi que le taux
de réchauffement élevé des sédiments deltaïques du Cénozoïque rapidement déposés. |
GEOSCAN ID | 293881 |
|
|