GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreHolocene investigations of three lakes in the central Northwest Territories: climate change across ecotone gradients and implications for future change
AuteurGalloway, J M; Sulphur, K C; Goldsmith, S A; Trainor, P; Patterson, R T; Hills, L V; Roe, H M; Swindles, G T; Crann, C; Macumber, A L; Falck, H
Source41st Annual Yellowknife Geoscience Forum Abstracts; par Irwin, D; Northwest Territories Geoscience Office, Yellowknife Geoscience Forum Abstracts Volume 2013, 2013 p. 22-23
Année2013
Séries alt.Secteur des sciences de la Terre, Contribution externe 20130446
Réunion41st Annual Yellowknife Geoscience Forum; Yellowknife; CA; 2013
Documentlivre
Lang.anglais
Mediapapier
Formatspdf
ProvinceTerritoires du Nord-Ouest
SNRC85I; 85J; 85P; 75M; 76D
Lat/Long OENS-115.0000 -110.0000 65.0000 62.5000
Sujetssediments lacustres; Holocène; fluctuations climatiques; palynomorphes; datations au radiocarbone; carottes; géochronologie; Quaternaire
Programmeadaptation et impacts sur l'environnement, environnement du nord, Géosciences de l'environnement
LiensOnline - En ligne
Résumé(disponible en anglais seulement)
The continued success of the natural resource based economy of the Northwest Territories depends on the use of winter roads. A 568 km long winter road, the Tibbitt to Contwoyto Winter Road (TCWR), is the only ground transportation route that services mines in the central NWT, including the Ekati Diamond Mine, the Snap Lake Mine, and the Diavik Diamond Mine. Cold winter temperatures are necessary for the continued viability of the TCWR because 87% of its length is built over frozen lakes. Changing ice stability, thickness, and duration of cover associated with recent climate variability have impacted the use of the road.

The purpose of this project is to analyze lake sediments, natural archives of past climate change, to better understand climate variability and terrestrial ecosystems response to those changes. This information may be used by stakeholders in adaption planning for current and forecasted climate change. Three lakes were studied along the latitudinal gradient of the TCWR. Waite Lake is located 75 km northeast of Yellowknife and within boreal forest. The late freezing and early ice breakup of this lake is a concern for winter road operation. Danny¿s Lake is located 30 km south of treeline and Horseshoe Lake is located 60 km north of treeline.

Sediments were obtained from the lakes using a freeze-coring device and analyzed for palynomorphs and microscopic charcoal at 2-cm intervals. Age-depth relationships of the sediments show decreasing sedimentation rates northward. Based on AMS 14C dating, the Waite Lake record extends to ~2500 BP and is analyzed at a ~30-yr resolution, the Danny¿s Lake record extends to ~8610 BP and is analyzed at a ~160-yr resolution, and the Horseshoe Lake record extends to ~8866 BP and is analyzed at a ~ 215 to ~860-yr resolution. The longer Danny¿s and Horseshoe lake records capture a warming event at ~7000 BP when Picea (spruce) replaced shrub tundra and tundra vegetation. The frequency and severity of regional fires decreased at this time, suggesting climate also became moister. At ~1730 BP fires increased and warmer temperatures resulted in the expansion of Pinus (probably jack pine) at Danny¿s and Horseshoe lakes. Picea glauca (white spruce) and Cupressaceae (probably juniper) expanded at this time at Waite Lake. Palynomorph abundances in Waite Lake document additional variability at ~1300 BP and ~120 BP, using the higher resolution analysis that was possible with this core.

Time series analyses of the accumulation rate of charcoal in the Waite Lake core show a significant (>95% C.I.) ~99-yr periodicity between ~1500 and ~1720 BP and between ~2050 and ~2350 BP. In the Danny¿s Lake record, significant ~430-yr and ~2610-yr (>90% C.I.) and ~980-yr (>95% C.I.) signals are present in the frequency of charcoal. The ~430-yr signal is significant between~4950 and ~5550 BP, the ~980-yr signal between ~3850 and ~6650 BP and the ~2610-yr signal is significant throughout the record. These signals suggest that solar variability may have influenced regional fire regimes in the NWT at various times in the Holocene.
Résumé(Résumé en langage clair et simple, non publié)
Nous utilisons le pollen, les spores et le charbon microscopique préservés dans les sédiments de trois lacs, le lac Waite, le lac Danny et le lac Horseshoe, situés le long du gradient latitudinal de la route d¿hiver qui relie Tibbitt à Contwoyto dans le centre des T.N.-O., pour montrer que le climat, la végétation et le régime des feux ont changé tout au long de l¿Holocène. Les profils plus longs des lacs Danny et Horseshoe montrent qu¿il y a eu un événement de réchauffement il y a environ 7 000 ans, lorsque l¿épinette a étendu son aire vers le nord. La fréquence régionale des feux a diminué à ce moment. Il y a environ 1 730 ans, la fréquence des feux a augmenté et la hausse des températures a entraîné l¿expansion de l¿aire de répartition du pin aux lacs Danny et Horseshoe. L¿épinette blanche et le genièvre ont étendu leur aire à ce moment au lac Waite. L¿analyse des séries chronologiques du charbon microscopique dans les carottes montre une périodicité d¿environ 99 ans (dans la carotte du lac Waite) et des périodicités d¿environ 430 ans et 2 610 ans (dans la carotte du lac Danny). Ces signes portent à croire que la variabilité de l¿activité solaire pourrait s¿être répercutée sur les régimes des feux dans les T.N.-O. à différentes époques au cours de l¿Holocène.
GEOSCAN ID293589