GEOSCAN, résultats de la recherche


TitreMantle transition zone input to kimberlite magmatism near a subduction zone:Origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada
AuteurTappe, S; Pearson, D G; Kjarsgaard, B A; Nowell, G; Dowall, D
SourceEarth and Planetary Science Letters vol. 371-372, 2013 p. 235-251,
Séries alt.Secteur des sciences de la Terre, Contribution externe 20130073
Documentpublication en série
Mediapapier; en ligne; numérique
ProvinceTerritoires du Nord-Ouest
Lat/Long OENS-112.0000 -110.0000 65.0000 64.0000
Sujetsmagmatisme; manteau terrestre; kimberlites; datations au neodymium-samarium; datation radiométrique; datations radiométriques; isotopes; rapports isotopiques; analyses des éléments en trace; géochimie des éléments en trace; analyses des éléments majeurs; géochimie des éléments majeurs; pétrologie ignée; interprétations tectoniques; cadre tectonique; Craton de Slave ; Champ de kimberlite de Lac De Gras; pétrologie ignée et métamorphique; tectonique; géochronologie; géochimie; Précambrien
Illustrationslocation maps; tables; plots
ProgrammeDiamands, GEM : La géocartographie de l'énergie et des minéraux
Résumé(disponible en anglais seulement)
Late Cretaceous - Eocene kimberlites from the Lac de Gras area, central Slave craton, show the most extreme Nd - Hf isotope decoupling observed for kimberlites worldwide. They are characterized by a narrow range of moderately enriched Nd isotope compositions (ENd(i)=-0.4 to -3.5) that contrasts strongly with their moderately depleted to highly enriched EHf(i) values (+3.9 to -9.9). Although digestion of cratonic mantle material in proto-kimberlite melt can theoretically produce steep arrays in Nd - Hf isotope space, the amount of contaminant required to explain the Lac de Gras data is unrealistic. Instead, it is more plausible that mixing of compositionally discrete melt components within an isotopically variable source region is responsible for the steep Nd - Hf isotope array.
As development of strongly negative dEHf requires isotopic aging of a precursor material with Sm/Nd>Lu/Hf for billion-year timescales, a number of models have been proposed where ancient MORB crust trapped in the mantle transition zone is the ultimate source of the extreme Hf isotope signature. However, we provide a conceptual modification and demonstrate that OIB-type domains within ancient subducted oceanic lithosphere can produce much stronger negative ??Hf during long-term isolation. Provided that these OIB-type domains have lower melting points compared with associated MORB crust, they are among the first material to melt within the transition zone during thermal perturbations. The resulting hydrous alkali silicate melts react strongly with depleted peridotite at the top of the transition zone and transfer negative dEHf signatures to less dense materials, which can be more easily entrained within upward flowing mantle. Once these entrained refertilized domains rise above 300 km depth, they may become involved in CO2- and H2O-fluxed redox melting of upper mantle peridotite beneath a thick cratonic lid.
We argue that incorporation of ancient transition zone material, which includes ultradeep diamonds, into the convecting upper mantle source region of Lac de Gras kimberlites was due to vigorous mantle return flow. This occurred in direct response to fast and complex subduction along the western margin of North America during the Late Cretaceous.
Résumé(Résumé en langage clair et simple, non publié)
On a determine que la source des kimberlites des mines Ekati et Diavik dans la region du lac de gras se trouve dans la zone de transition du manteau a environ 300 km de profondeur, selon des etudes geochemiques de ces roches