GEOSCAN, résultats de la recherche


TitreAnaerobic methane oxidation in low-organic content methane seep sediments
AuteurPohlman, J W; Riedel, M; Bauer, J E; Canuel, E A; Paull, C K; Lapham, L; Grabowski, K S; Coffin, R B; Spence, G D
SourceGeochimica et Cosmochimica Acta vol. 108, 2013 p. 184-201, (Accès ouvert)
Séries alt.Secteur des sciences de la Terre, Contribution externe 20120304
ÉditeurElsevier BV
Documentpublication en série
Mediapapier; en ligne; numérique
ProvinceRégion extracotière de l'ouest
Lat/Long OENS-126.9000 -126.8000 48.7333 48.6333
Sujetscapacité de production d'hydrocarbures; hydrocarbures; gaz d'hydrocarbure; gaz; hydrate; méthane; géochimie du méthane; méthane hydraté; géologie marine; combustibles fossiles; géochimie
Illustrationslocation maps; profiles; tables; plots; histograms
ProgrammeCaractérisation des Hydrates de gaz, Hydrates de gaz
Résumé(disponible en anglais seulement)
Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains <0.4 wt.% total organic carbon (OC) and primarily consists of glaciallyderived material that was deposited 14,900 - 15,900 yrs BP during the retreat of the late Quaternary Cordilleran Ice Sheet. We hypothesize this aged and exceptionally low-OC content sedimentary OM is biologically refractory, thereby limiting degradation of non-methane OM by sulfate reduction and maximizing methane consumption by sulfate-dependent AOM. A radiocarbon-based dissolved inorganic carbon (DIC) isotope mass balance model demonstrates that respired DIC in sediment pore fluids is derived from a fossil carbon source that is devoid of 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.