GEOSCAN, résultats de la recherche


TitreGreat Bear magmatic zone rock property database: Linking geology and geophysics within IOCG systems
AuteurEnkin, R J; Hayward, N; Lee, M D; Corriveau, L; Montreuil, J -F; Acosta, P
SourceGAC-MAC joint annual meeting, St. John's 2012, abstracts/AGC-AMC congrès annuel conjoint, St. John's 2012, résumés; par GAC-MAC organizing Committee; Association géologique du Canada-Association minéralogique du Canada, Réunion annuelle, Programme et résumés vol. 35, 2012 p. 41
LiensOnline - En ligne
Séries alt.Secteur des sciences de la Terre, Contribution externe 20120260
RéunionGeological Association of Canada, Mineralogical Association of Canada, Joint Annual Meeting; St. John's; CA; mai 27-29, 2012
Documentpublication en série
ProvinceTerritoires du Nord-Ouest
SNRC85N; 86C; 86D; 86E; 86F; 86K; 86L
Lat/Long OENS-119.0000 -116.0000 67.0000 63.0000
Sujetspropriétés du sédiment; propriétés magnétiques; densités; susceptibilité magnétique; propriétés électriques; oxydes de fer; cuivre; or; minéralisation; Zone de Great Bear Magmatic ; géologie économique; géophysique
ProgrammeGisements polymétalliques - Zone magmatique du Grand lac de l'Ours (T.N-O.), GEM : La géocartographie de l'énergie et des minéraux
Résumé(disponible en anglais seulement)
The two primary poles of mineral exploration are geological mapping and geophysical surveying. In order to link these two great exploration investments, labs such as the Geological Survey of Canada Paleomagnetism and Petrology Laboratory and the McMaster Applied Geophysics and Geological Imaging Centre have undertaken extensive measurements of physical properties to strategically chosen rock collections: density (bulk and skeletal), magnetic susceptibility and remanence, and electrical impedance spectra for resistivity and chargeability. The Great Bear magmatic zone (GBmz) Rock Property Database provides a useful example of this approach. The current exploration model for the GBmz is iron oxide copper gold (IOCG) mineralization (and affiliated deposits) featuring a six-zone alteration classification of mineral assemblages. From the high temperature-deeper-earlier-core to the cooler-shallower-later-distal alteration indices, the zones are identified as 1:Na(Ca); 2:Ca-Fe(Na); 3:High Temp K-Fe; 4:Skarn (if carbonates are present); 5:Low Temp K-Fe; 6:Low Temp silicification. Analysis of the distributions of physical properties as a function of the lithologies and alteration zones of the range of rocks collected in the GBmz reveals useful patterns to provide new exploration vectors. The geometric mean magnetic susceptibilities [E-3 SI units ± standard error] are: 1: 3.2±40%; 2: 17.7±16%; 3: 12.6±18%; 4: 1.5±83%; 5: 3.9±3.3%; 6: 2.1±15%. Note that the magnetite produced in the higher temperature zones 2 and 3 lead to magnetic susceptibilities 6 to 8 times higher on average than that of zone 6 samples. The iron oxide mineralization leads to high magnetic remanence values which must be taken into account in magnetic survey interpretation. One quarter of rocks identified to be in zone 2 or 3 alteration have Koenigsberger ratios above 1, compared to 10 to 15% of the samples in the other zones. The correlation of high magnetic and density values leads to hybrid density-magnetic potential field models. Current work on resistivity-chargeability properties is motivated by strong unexpected anomalies observed in electromagnetic surveys in the Port Radium region. As of January 2012, rock properties from over 700 samples from the GBmz have been measured and compiled, and several hundred are currently under examination. Through the petrophysical link coupled with clear understanding of the relevant mineralization model, new effective strategies are being developed to target and locate new mineral deposits.