GEOSCAN, résultats de la recherche


TitreSimulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico
AuteurCalderhead, A I; Therrien, R; Rivera, A; Martel, R; Garfias, J
SourceAdvances in Water Resources vol. 34, 2011 p. 83-97,
Séries alt.Secteur des sciences de la Terre, Contribution externe 20120195
Documentpublication en série
Mediapapier; en ligne; numérique
Lat/Long OENS-101.0000 -99.0000 20.0000 18.0000
Sujetseau souterraine; régimes des eaux souterraines; ressources en eau souterraine; écoulement de la nappe d'eau souterraine; circulation des eaux souterraines; débit d'affaissement; affaissement; budget hydrologique; aquifères; modèles; débits d'alimentation en eau; planification urbaine; géologie urbaine; télédétection; hydrogéologie; stratigraphie
Illustrationslocation maps; cross-sections; plots; tables
ProgrammeAquifer Assessment & support to mapping, Géoscience des eaux souterraines
Résumé(disponible en anglais seulement)
A multidisciplinary approach is presented here for quantifying land subsidence in a heavily pumped aquifer system with complex stratigraphy. The methodology consists in incorporating Terzaghi's 1D instantaneous compaction principle into a 3D groundwater flow model that is then applied and calibrated to reproduce observed hydraulic heads and compaction for the Toluca Valley, Mexico. Differential Interferometric Synthetic Aperture Radar (D-InSAR), a generated 3D-geological model, extensometers, monitoring wells, and available literature are used to constrain the model. The D-InSAR measured subsidence, extensometers, and numerical simulations of subsidence agree relatively well. Simulations show that since regional subsidence began in the mid 1960s there has been up to 2 m of subsidence in the industrial corridor, where heavy pumping and thick clay layers are found. This study shows that an approach using various sources of data is useful in estimating and constraining the vertical component of the inelastic skeletal specific storage.