Titre | Radarsat-2 DSM generation with new hybrid, deterministic, and empirical geometric modeling without GCP |
| |
Auteur | Toutin, T |
Source | IEEE Transactions on Geoscience and Remote Sensing (Institute of Electrical and Electronics Engineers) 2012., https://doi.org/10.1109/TGRS.2011.2170693 |
Image |  |
Année | 2012 |
Séries alt. | Secteur des sciences de la Terre, Contribution externe 20110059 |
Éditeur | Institute of Electrical and Electronics Engineers (IEEE) |
Document | publication en série |
Lang. | anglais |
DOI | https://doi.org/10.1109/TGRS.2011.2170693 |
Media | papier; en ligne; numérique |
Formats | pdf |
Sujets | télédétection; analyses géométriques; modèles; établissement de modèles; techniques de cartographie; géophysique |
Illustrations | images satellitaires; photographies; tableaux |
Programme | Cartographie topographique |
Diffusé | 2012 05 01 |
Résumé | (disponible en anglais seulement) Digital surface models (DSMs) extracted from highresolution Radarsat-2 stereo-images using different geometric modeling (deterministic, new hybrid, and
empirical) are evaluated. The 3-D deterministic models are Toutin's and hybrid Toutin's models (TM and HTM) developed at the Canada Centre for Remote Sensing, and the empirical model is the rational function model (RFM). TM is computed with one and
eight ground control points (GCPs), HTM without GCP and RFM supplied by MacDonald, Dettwiler and Associates Ltd. is postprocessed with 3 - 9 GCPs depending of degrees of 2-D polynomial functions. The DSMs are then generated and compared to 0.2-m
accurate lidar elevation data. Because DSMs included the height of land covers, elevation linear errors with 68% and 90% confidence level (LE68 and LE90) are computed and compared over bare surfaces only. LE90 results are: TM with eight GCPs achieves
the best results (6.3 m), then HTM with no GCP (7 m), TM with one GCP (8.6 m), and finally RFM the worst (9.7 m) whatever the polynomial degree and GCP number. HTM is the only modeling not using any GCP, which offers a strong advantage in operational
environments. |
GEOSCAN ID | 288701 |
|
|