GEOSCAN, résultats de la recherche

Menu GEOSCAN


TitreThe timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration
AuteurHeaman, L M; Kjarsgaard, B A; Creaser, R A
SourceA tale of two cratons: the Slave-Kaapvaal workshop; par Jones, A G (éd.); Carlson, R W (éd.); Grutter, H (éd.); Lithos vol. 71, issue 2-4, 2003 p. 153-184, https://doi.org/10.1016/j.lithos.2003.07.005
LiensAbstract - Résumé
Année2003
Séries alt.Commission géologique du Canada, Contributions aux publications extérieures 2002135
Séries alt.Lithoprobe Publication 1315
RéunionThe Slave-Kaapvaal Workshop; Merrickville, Ontario; CA; Septembre 5-9, 2001
Documentpublication en série
Lang.anglais
DOIhttps://doi.org/10.1016/j.lithos.2003.07.005
Mediapapier; en ligne; numérique
Formatspdf
ProvinceTerritoires du Nord-Ouest
SNRC75E; 75F; 75G; 75H/03; 75H/04; 75H/05; 75H/06; 75H/11; 75H/12; 75H/13; 75H/14; 75I/03; 75I/04; 75I/05; 75I/06; 75I/11; 75I/12; 75I/13; 75I/14; 75J; 75K; 75L; 75M; 75N; 75O; 75P/03; 75P/04; 75P/05; 75P/06; 75P/11; 75P/12; 75P/13; 75P/14; 76A/03; 76A/04; 76A/05; 76A/06; 76A/11; 76A/12; 76A/13; 76A/14; 76B; 76C; 76D; 76E; 76F; 76G; 76H/03; 76H/04; 76H/05; 76H/06; 76H/11; 76H/12; 76H/13; 76H/14; 76I/03; 76I/04; 76I/05; 76I/06; 76I/11; 76I/12; 76I/13; 76I/14; 76J; 76K; 76L; 76M; 76N; 76O; 76P/03; 76P/04; 76P/05; 76P/06; 76P/11; 76P/12; 76P/13; 76P/14; 77A/02; 77A/03; 77A/04; 77A/05; 77A/06; 77A/07; 77A/10; 77A/11; 77A/12; 77A/13; 77A/14; 77A/15; 77B; 85F/01; 85F/02; 85F/07; 85F/08; 85F/09; 85F/10; 85F/15; 85F/16; 85G; 85H; 85I; 85J; 85K/01; 85K/02; 85K/07; 85K/08; 85K/09; 85K/10; 85K/15; 85K/16; 85N/01; 85N/02; 85N/07; 85N/08; 85N/09; 85N/10; 85N/15; 85N/16; 85O; 85P; 86A; 86B; 86C/01; 86C/02; 86C/07; 86C/08; 86C/09; 86C/10; 86C/15; 86C/16; 86F/01; 86F/02; 86F/07; 86F/08; 86F/09; 86F/10; 86F/15; 86F/16; 86G; 86H; 86I; 86J; 86K/01; 86K/02; 86K/07; 86K/08; 86K/09; 86K/10; 86K/15; 86K/16; 86N/01; 86N/02; 86N/07; 86N/08; 86N/09; 86N/10; 86N/15; 86N/16; 86O; 86P; 87A; 87B/01; 87B/08; 87B/09; 87B/16
Lat/Long OENS-117.0000 -105.0000 69.0000 61.0000
Sujetskimberlites; pérowskite; zircon; manteau terrestre; phlogopite; craton; magmatisme; diamant; datations au uranium-plomb; datation au uranium-plomb; géochimie; géochronologie; géologie économique; pétrologie ignée et métamorphique; minéralogie; Cambrien; Dévonien; Silurien; Ordovicien; Cénozoïque; Mésozoïque; Jurassique; Trias
Illustrationslocation maps; tables; geological sketch maps; graphs
ProgrammeCRSNG Conseil de recherches en sciences naturelles et en génie du Canada
Résumé(disponible en anglais seulement)
Based on a compilation of more than 100 kimberlite age determinations, four broad kimberlite emplacement patterns can be recognized in North America: (1) a northeast Eocambrian/Cambrian Labrador Sea province (Labrador, Que´bec), (2) an eastern Jurassic province (Ontario, Que´bec, New York, Pennsylvania), (3) a Cretaceous central corridor (Nunavut, Saskatchewan, central USA), and (4) a western mixed (Cambrian-Eocene) Type 3 kimberlite province (Alberta, Nunavut, Northwest Territories, Colorado/Wyoming). Ten new U-Pb perovskite/mantle zircon and Rb-Sr phlogopite age determinations are reported here for kimberlites from the Slave and Wyoming cratons of western North America. Within the Type 3 Slave craton, at least four kimberlite age domains exist: I-a southwestern Siluro-Ordovician domain (f450 Ma), II-a SE Cambrian domain (f540 Ma), III-a central Tertiary/Cretaceous domain (48-74 Ma) and IV-a northern mixed domain consisting of Jurassic and Permian kimberlite fields. New U-Pb perovskite results for the 614.5F2.1 Ma Chicken Park and 408.4F2.6 Ma Iron Mountain kimberlites in the State Line field in Colorado and Wyoming confirm the existence of at least two periods of pre- Mesozoic kimberlite magmatism in the Wyoming craton. A compilation of robust kimberlite emplacement ages from North America, southern Africa and Russia indicates that a high proportion of known kimberlites are Cenozoic/Mesozoic. We conclude that a majority of these kimberlites were generated during enhanced mantle plume activity associated with the rifting and eventual breakup of the supercontinent Gondwanaland. Within this prolific period of kimberlite activity, there is a good correlation between North America and Yakutia for three distinct short-duration (f10 my) periods of kimberlite magmatism at 48-60, 95-105 and 150-160 Ma. In contrast, Cenozoic/Mesozoic kimberlite magmatism in southern Africa is dominated by a continuum of activity between 70-95 and 105-120 Ma with additional less-prolific periods of magmatism in the Eocene (50-53 Ma), Jurassic (150-190) and Triassic (f235 Ma). Several discrete episodes of pre-Mesozoic kimberlite magmatism variably occur in North America, southern Africa and Yakutia at 590-615, 520-540, 435-450, 400-410 and 345-360 Ma. One of the surprises in the timing of kimberlite magmatism worldwide is the common absence of activity between about 250 and 360 Ma; this period is even longer in southern Africa. This >110 my period of quiescence in kimberlite magmatism is likely linked to relative crustal and mantle stability during the lifetime of the supercontinent Gondwanaland. Economic diamond deposits in kimberlite occur throughout the Phanerozoic from the Cambrian (Venetia, South Africa; Snap Lake and Kennady Lake, Canada) to the Tertiary (Mwadui, Tanzania; Ekati and Diavik in Lac de Gras, Canada). There are clearly some discrete periods when economic kimberlite-hosted diamond deposits formed globally. In contrast, the Devonian event, which is such an important source of diamonds in Yakutia, is notably absent in the kimberlite record from both southern Africa and North America.
GEOSCAN ID213777