GEOSCAN Search Results: Fastlink

GEOSCAN Menu


TitleAccessing the impact of meteorological variables on machine learning flood susceptibility mapping
 
AuthorMcGrath, HORCID logo; Gohl, P
SourceRemote Sensing vol. 14, 2022 p. 1-17, https://doi.org/10.3390/rs14071656 Open Access logo Open Access
Image
Year2022
Alt SeriesNatural Resources Canada, Contribution Series 20210578
PublisherMDPI
Documentserial
Lang.English
Mediapaper; digital; on-line
File formatpdf
ProvinceCanada; Canada; British Columbia; Alberta; Saskatchewan; Manitoba; Ontario; Quebec; New Brunswick; Nova Scotia; Prince Edward Island; Newfoundland and Labrador; Northwest Territories; Yukon; Nunavut
NTS1; 2; 3; 10; 11; 12; 13; 14; 15; 16; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 52; 53; 54; 55; 56; 57; 58; 59; 62; 63; 64; 65; 66; 67; 68; 69; 72; 73; 74; 75; 76; 77; 78; 79; 82; 83; 84; 85; 86; 87; 88; 89; 92; 93; 94; 95; 96; 97; 98; 99; 102; 103; 104; 105; 106; 107; 114O; 114P; 115; 116; 117; 120; 340; 560
SubjectsScience and Technology; floods; flood potential; meteorology; machine learning; Meteorological data; Forests
Illustrationsfrequency distribution diagrams; tables; location maps; variation diagrams; graphs
ProgramGeobase 2.0 High Resolution Data Exploitation
Released2022 03 30
AbstractMachine learning (ML) algorithms have emerged as competent tools for identifying areas that are susceptible to flooding. The primary variables considered in most of these works include terrain models, lithology, river networks and land use. While several recent studies include average annual rainfall and/or temperature, other meteorological information such as snow accumulation and short-term intense rain events that may influence the hydrology of the area under investigation have not been considered. Notably, in Canada, most inland flooding occurs during the freshet, due to the melting of an accumulated snowpack coupled with heavy rainfall. Therefore, in this study the impact of several climate variables along with various hydro-geomorphological (HG) variables were tested to determine the impact of their inclusion. Three tests were run: only HG variables, the addition of annual average temperature and precipitation (HG-PT), and the inclusion of six other meteorological datasets (HG-8M) on five study areas across Canada. In HG-PT, both precipitation and temperature were selected as important in every study area, while in HG-8M a minimum of three meteorological datasets were considered important in each study area. Notably, as the meteorological variables were added, many of the initial HG variables were dropped from the selection set. The accuracy, F1, true skill and Area Under the Curve (AUC) were marginally improved when the meteorological data was added to the a parallel random forest algorithm (parRF). When the model is applied to new data, the estimated accuracy of the prediction is higher in HG-8M, indicating that inclusion of relevant, local meteorological datasets improves the result.
Summary(Plain Language Summary, not published)
An assessment of the impact of adding meteorological variables on the results of a machine learning approach to creating flood susceptibility map.
GEOSCAN ID329493

 
Date modified: