Title | Petrographic, fluid inclusion, and secondary ion mass spectrometry stable isotopic (O, S) study of
Mississippi Valley-type mineralization in British Columbia and Alberta |
Download | Downloads |
| |
Licence | Please note the adoption of the Open Government Licence - Canada
supersedes any previous licences. |
Author | Kontak, D J; Paradis, S ; Waller, Z; Fayek, M |
Source | Targeted Geoscience Initiative 5: volcanic- and sediment-hosted massive-sulfide deposit genesis and exploration methods; by Peter, J M (ed.); Gadd, M G (ed.); Geological Survey of Canada, Bulletin 617, 2022 p. 203-245, https://doi.org/10.4095/327994
Open Access |
Image |  |
Year | 2022 |
Publisher | Natural Resources Canada |
Document | serial |
Lang. | English |
Media | on-line; digital |
Related | This publication is contained in Targeted Geoscience
Initiative 5: volcanic- and sediment-hosted massive-sulfide deposit genesis and exploration methods |
File format | pdf |
Province | British Columbia; Alberta; Northwest Territories |
NTS | 75D; 75E; 75F; 82F; 82G; 82J; 82K; 82N; 82O; 83M; 84D; 84E; 84F; 84K; 84L; 84M; 84N; 84O; 84P; 85A; 85B; 85C; 85D; 85E; 85F; 85G; 85H; 93M; 93N; 93O; 93P; 94; 95A; 95B; 95H; 103P |
Area | Rocky Mountains |
Lat/Long WENS | -118.0000 -114.0000 52.0000 48.0000 |
Lat/Long WENS | -130.0000 -110.0000 62.0000 55.0000 |
Subjects | economic geology; igneous and metamorphic petrology; mineralogy; geochemistry; Science and Technology; Nature and Environment; mineral exploration; exploration methods; mineral deposits; Mississippi
Valley deposits; sulphide deposits; sedimentary ore deposits; base metals; zinc; lead; ore mineral genesis; mineralization; ore controls; petrographic analyses; fluid inclusions; mass spectrometer analysis; isotopic studies; oxygen isotopes; sulphur
isotope ratios; scanning electron microscope analyses; textural analyses; host rocks; geological history; thermal analyses; fluid dynamics; cementation; dolomites; sphalerite; calcite; carbonates; pyrite; sulphides; paragenesis; salinity; Canadian
Cordillera; Rocky Mountain Fold-And-Thrust Belt; Kootenay Arc; Kootenay Terrane; North American Craton; Robb Lake Deposit; Mucho-McConnell Formation; Pine Point Deposit; Pine Point District; Kicking Horse Deposit; Monarch Deposit; Shag Deposit;
Munroe Deposit; Oldman Deposit; Western Canadian Sedimentary Basin; Peace River Arch; Mastodon Deposit; O'Donnell Deposit; Dawson Oil Field; Great Slave Reef; Reeves MacDonald Deposit; Central Presqu'ile Barrier; Martin Hills Deposit; Steen River
Deposit; Slavery Creek Deposit; Oak Gas Field; Jersey Emerald Deposit; Wigwam Deposit; Rose Deposit; Abbott-Wagner Deposit; HB Deposit |
Illustrations | location maps; geoscientific sketch maps; tables; plots; photomicrographs; geochronological charts; ternary diagrams; schematic diagrams |
Program | Targeted Geoscience Initiative (TGI-5) Volcanic and sedimentary systems - volcanogenic massive sulphide ore systems |
Released | 2022 01 27; 2022 11 17 |
Abstract | A comprehensive study of Mississippi Valley-type base-metal deposits across the Canadian Cordillera was done to compare and contrast their features. Extensive dissolution of host rocks is followed by
multiple generations of dolomite cements from early, low-temperature, fine-grained to coarser, higher temperature types that overlap with Zn-Pb sulfide minerals; late-stage calcite occludes residual porosity. Dolomite is generally chemically
stoichiometric, but ore-stage types are often rich in Fe (<1.3 weight per cent FeO) with small sphalerite inclusions. Sphalerite-hosted fluid inclusions record ranges for homogenization temperatures (77-214°C) and fluid salinity (1-28 weight per cent
equiv. NaCl±CaCl2). These data suggest fluid mixing with no single fluid type related to all sulfide mineralization. In situ secondary ion mass spectrometry (SIMS) generated delta-18OVSMOW values for carbonate minerals (13-33 permille) reflect
dolomite and calcite formation involving several fluids (seawater, basinal, meteoric) over a large temperature range at varying fluid-rock ratios. Sphalerite and pyrite SIMS delta-34SVCDT values vary (8-33 permille) but in single settings have small
ranges (<2-3 permille) that suggest sulfur was reduced via thermochemical sulfate reduction from homogeneous sulfur reservoirs. Collectively, the data implicate several fluids in the mineralizing process and suggest mixing of a sulfur-poor,
metal-bearing fluid with a metal-poor, sulfide-bearing fluid. |
Summary | (Plain Language Summary, not published) The Targeted Geoscience Initiative (TGI) is a collaborative federal geoscience program that provides industry with the next generation of geoscience
knowledge and innovative techniques to better detect buried mineral deposits, thereby reducing some of the risks of exploration. This contribution summarizes the results of a 5-year study of multiple mineral deposit types: polymetallic hyper-enriched
black shale; sedimentary exhalative Pb-Zn; carbonate-hosted Pb-Zn, magnesite; fracture-controlled replacement Zn-Pb, rare-earth element-F-Ba; and volcanogenic massive sulfides. Studies employed field geology, combined with geochemical
(lithogeochemistry, stable and radiogenic isotopes, fluid inclusions, and mineral chemistry) and geophysical (rock properties, magnetotelluric, and seismic) methods. Collectively, the research provides advanced genetic and exploration models for
volcanic- and sedimentary-hosted base-metal deposits, together with new laboratory, geophysical, and field techniques. |
GEOSCAN ID | 327994 |
|
|