GEOSCAN Search Results: Fastlink

GEOSCAN Menu


TitleChannel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments
 
AuthorMiramontes, E; Eggenhuisen, J T; Silva Jacinto, R; Poneti, G; Pohl, F; Normandeau, AORCID logo; Campbell, D CORCID logo; Hernández-Molina, F J
SourceGeology vol. 48, 2020 p. 1-5, https://doi.org/10.1130/G47111.1 Open Access logo Open Access
Image
Year2020
Alt SeriesNatural Resources Canada, Contribution Series 20190550
PublisherGeological Society of America
Documentserial
Lang.English
Mediapaper; on-line; digital
File formatpdf
Subjectsmarine geology; sedimentology; geophysics; Nature and Environment; Science and Technology; geological evolution; channels; currents; turbidity currents; oceanography; sedimentary environments; marine environments; continental margins; paleocurrents; bedforms; depositional models
Illustrationslocation maps; geoscientific sketch maps; geophysical profiles; photographs; profiles; cross-sections
ProgramMarine Geoscience for Marine Spatial Planning
Released2020 01 31
AbstractTurbidity currents and contour currents are common sedimentary and oceanographic processes in deep-marine settings that affect continental margins worldwide. Their simultaneous interaction can form asymmetric and unidirectionally migrating channels, which can lead to opposite interpretations of paleocontour current direction: channels migrating against the contour current or in the direction of the contour current. In this study, we performed three-dimensional flume-tank experiments of the synchronous interaction between contour currents and turbidity currents to understand the effect of these combined currents on channel architecture and evolution. Our results show that contour currents with a velocity of 10-19 cm/s can substantially deflect the direction of turbidity currents with a maximum velocity of 76-96 cm/s, and modify the channel-levee system architecture. A lateral and nearly stationary front formed on the levee located upstream of the contour current, reduced overspill and thus restrained the development of a levee on this side of the channel. Sediment was preferentially carried out of the channel at the flank located downstream of the contour current. An increase in contour-current velocity resulted in an increase in channel-levee asymmetry, with the development of a wider levee and more abundant bedforms downstream of the contour current. This asymmetric deposition along the channel suggests that the direction of long-term migration of the channel form should go against the direction of the contour current due to levee growth downstream of the contour current, in agreement with one of the previously proposed conceptual models.
Summary(Plain Language Summary, not published)
Turbidity currents and contour currents are common processes in deep-marine settings that affect continental margins worldwide. Their interaction can form particular sedimentary bodies. Here, we show that contour currents can substantially deflect the direction of turbidity currents, affect the entire gravitational flow and modify the channel-levee system architecture.
GEOSCAN ID321866

 
Date modified: