GEOSCAN Search Results: Fastlink


TitleSource parameters of the 2017 Mw 6.2 Yukon earthquake doublet inferred from coseismic GPS and ALOS-2 deformation measurements
AuthorFeng, WORCID logo; Samsonov, SORCID logo; Liang, C; Li, J; Charbonneau, F; Yu, C; Li, Z
SourceGeophysical Journal International vol. 216, issue 3, 2018 p. 1517-1528, Open Access logo Open Access
Alt SeriesNatural Resources Canada, Contribution Series 20180430
PublisherOxford University Press (OUP)
Mediapaper; on-line; digital
File formatpdf; html
ProvinceYukon; British Columbia
NTS104M/04; 104M/05; 104M/12; 104M/13; 105D/04; 105D/05; 114P/01; 114P/02; 114P/03; 114P/06; 114P/07; 114P/08; 114P/09; 114P/10; 114P/11; 114P/14; 114P/15; 114P/16; 115A/01; 115A/02; 115A/03; 115A/06; 115A/07; 115A/08
AreaWhitehorse; Alaska; Yakutat; Canada; United States of America
Lat/Long WENS-137.5000 -135.5000 60.5000 59.0000
Subjectsgeophysics; tectonics; satellite geodesy; remote sensing; satellite imagery; radar methods; earthquakes; earthquake mechanisms; tectonic setting; crustal movements; deformation; software; modelling; bedrock geology; structural features; faults; stress analyses; 2017 Mw 6.2 Yukon Earthquake; Denali Fault; Duke River Fault; North American Plate; Pacific Plate; Yakutat Terrane; Global positioning systems; Data processing
Illustrationsgeoscientific sketch maps; tables; satellite images; focal mechanisms; profiles
Released2018 11 22
AbstractWe investigated an Mw ? 6.2 earthquake doublet on the border of the USA and Canada using ALOS2 Light-of-Sight displacements and GPS measurements. We selected three L-band ALOS-2 interferograms with temporal baselines of one yr to extract coseismic deformation maps, in which master and slave images were both acquired in July. A subpixel-based alignment and another range spectral splitting techniques under the GAMMA InSAR software framework were applied to improve the interferometric coherence and reduce the effects of phase anomalies in two of the three interferometric pairs due to either ionospheric delay or a potential focusing issues in the generation of the ALOS2 SLC data. The updated interferograms convincingly reveal deformation fringe patterns produced by the two earthquakes. We conducted a nonlinear geophysical inversion to estimate the geometric parameters of the earthquakes with the InSAR and GPS measurements. The best-fitting model shows that a thrust faulting on a reverse fault and left-lateral strike-slip faulting on a nearly vertical fault with the centroid depths of 9.3±0.6 and 8.4±0.7 km, respectively, are most likely responsible for the earthquake doublet. The eastern Denali fault (EDF) and Duke River fault are major active faults in the region and the earthquake doublet could be due to reactivation of the part of the two faults system.

Date modified: