Title | Quantification of changes in oil sands mining infrastructure land based on RapidEye and SPOT5 |
Author | Zhang, Y; Lantz, N; Guindon, B; Shipman, T; Chao, D; Raymond, D |
Source | Proceedings of SPIE, the international society of optical engineering vol. 8893, 889302, 2013., https://doi.org/10.1117/12.2029001 |
Year | 2013 |
Alt Series | Natural Resources Canada, Contribution Series 20181057 |
Publisher | SPIE |
Document | serial |
Lang. | English |
Media | paper; on-line; digital |
File format | pdf |
Subjects | geophysics; remote sensing |
Abstract | Natural resources development, spanning exploration, production and transportation activities, alters local land surface at various spatial scales. Quantification of these anthropogenic changes, both
permanent and reversible, is needed for compliance assessment and for development of effective sustainable management strategies. Multi-spectral high resolution imagery data from SPOT5 and RapidEye were used for extraction and quantification of the
anthropogenic and natural changes for a case study of Alberta bitumen (oil sands) mining located near Fort McMurray, Canada. Two test sites representative of the major Alberta bitumen production extraction processes, open pit and in-situ extraction,
were selected. A hybrid change detection approach, combining pixel- and object-based target detection and extraction, is proposed based on Change Vector Analysis (CVA). The extraction results indicate that the changed infrastructure landscapes of
these two sites have different footprints linked with their differing oil sands production processes. Pixeland object-based accuracy assessments have been applied for validation of the change detection results. For manmade disturbances, other than
fine linear features such as the seismic lines, accuracies of about 80% have been achieved at the pixel level while, at the object level, these rise to 90-95%. Since many disturbance features are transient, the land surface changes by re-growth of
vegetation and the capability for natural restoration on the mining sites have been assessed. © 2013 SPIE. |
GEOSCAN ID | 311411 |
|
|