GEOSCAN Search Results: Fastlink


TitleBottoms up: developing a new bedrock surface for the Niagara Peninsula
DownloadDownload (whole publication)
LicencePlease note the adoption of the Open Government Licence - Canada supersedes any previous licences.
AuthorBurt, A K; Biswas, S; Rainsford, D; Dietiker, BORCID logo; Pugin, A; Crow, HORCID logo
SourceRegional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario geoscientists open house; by Russell, H A JORCID logo; Ford, D; Priebe, E H; Holysh, S; Geological Survey of Canada, Open File 8363, 2018 p. 6, Open Access logo Open Access
PublisherNatural Resources Canada
MeetingRegional-Scale Groundwater Geoscience in Southern Ontario: Open House; Guelph; CA; February 28 - March 1, 2018
Documentopen file
Mediaon-line; digital
RelatedThis publication is contained in Regional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario geoscientists open house
File formatpdf
NTS30L/13; 30L/14; 30L/15; 30M/02; 30M/03; 30M/04; 30M/06
AreaNiagara Peninsula
Lat/Long WENS -80.0000 -78.7500 43.5833 42.7500
Subjectsregional geology; surficial geology/geomorphology; geophysics; bedrock topography; modelling; geophysical surveys; gravity surveys, ground; seismic reflection surveys; geophysical logging; observation wells; boreholes; core samples; overburden thickness; stratigraphic analyses; escarpments; buried valleys; software; Datamine Studio; Erigan channel; 3D modelling; geological mapping techniques; Phanerozoic; Cenozoic; Quaternary; Paleozoic
ProgramGroundwater Geoscience, Aquifer Assessment & support to mapping
Released2018 02 16
AbstractThe Niagara Peninsula three-dimensional (3-D) sediment mapping project was initiated in 2013 with the primary goal of constructing a model of regional-scale Quaternary deposits that form both regional and local aquifers and aquitards between Port Dover in the southwest, the Regional Municipality of Waterloo in the northwest and the Niagara River in the east. To date, the primary focus of the project has been on data acquisition.
Five shallow, high-resolution seismic reflection lines, ranging from 4.5 to 21.5 km in length, were acquired by the Geological Survey of Canada's (GSC) Near Surface Geophysics Section to determine whether multiple thalwegs exist within the buried Erigan channel, to delineate the lateral extent and geometry of gravel beds observed during drilling and to provide insight into late-glacial moraine systems. Downhole geophysical logging was conducted in monitoring wells to investigate chemical and physical properties of the sediments, and to verify the conversion of seismic reflection time sections to depths..
A 6828 station ground gravity survey was conducted along selected roads and highways at a nominal spacing of 100 m. The calculated gravity residuals were used to identify buried-bedrock valleys and guide subsequent drilling. The survey was effective in identifying deeply incised valleys, such as St. Davids and the northern end of the Erigan, but less definitive where valleys broaden and the deep regional and shallow residual components of the gravity are not as easily separated.
A total of 99 continuously cored boreholes with a combined length of 3192 m, 29 of which have been converted into monitoring wells, have been drilled for this project. The borehole data is augmented by 130 exposures, soil probe and hand-auger cores and extensive legacy datasets (water well records, oil and gas records, geotechnical records, published geological reports and archived field notes).
A key first step in the 3-D modelling process is to generate a high-quality bedrock topographic surface that forms the foundation layer for the overlying sediment model. The surface is interpolated using Datamine Studio® software after manually digitizing 3-D points identifying the top of rock onto the new and legacy borehole traces. Additional points were digitized adjacent to, or below, the borehole traces in order to refine the geometry of the surface and reduce potential effects of clustered data points. By modelling the gravity results using representative density values for the Quaternary and bedrock layers, and integrating with interpretations from seismic studies in the area, it is possible to further constrain the shape of the bedrock surface.
The resulting surface shows southward-dipping bedrock separated by the prominent features of the Niagara and Onondaga escarpments. Deep and narrow re-entrant valleys bisect the resistant escarpments, becoming wider where they cross softer formations.
Summary(Plain Language Summary, not published)
Proceedings for a workshop in Guelph Ontario as part of the program S&T exchange. Abstracts have been contributed by Ontario Geological Survey, Ministry of Environment and Climate Change, Conservation Authorities, Universities, private sector, and Unites States Geological Survey.

Date modified: