GEOSCAN Search Results: Fastlink


TitleApplications of unmanned aerial vehicles for mapping coastal processes and intertidal marine habitats
DownloadDownload (whole publication)
LicencePlease note the adoption of the Open Government Licence - Canada supersedes any previous licences.
AuthorIerodiaconou, D; Murfitt, S; Allan, B; Bellgrove, A; Rattray, A; Kennedy, D; Howe, S; Schimel, A; Young, M
SourceProgram and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada; by Todd, B JORCID logo; Brown, C J; Lacharité, M; Gazzola, V; McCormack, E; Geological Survey of Canada, Open File 8295, 2017 p. 60, Open Access logo Open Access
LinksGeoHab 2017
PublisherNatural Resources Canada
Meeting2017 GeoHab: Marine Geological and Biological Habitat Mapping; Dartmouth, NS; CA; May 1-4, 2017
Documentopen file
Mediaon-line; digital
RelatedThis publication is contained in Program and abstracts: 2017 GeoHab Conference, Dartmouth, Nova Scotia, Canada
File formatpdf
Subjectsmarine geology; surficial geology/geomorphology; environmental geology; geophysics; engineering geology; Nature and Environment; mapping techniques; oceanography; marine environments; coastal studies; conservation; marine organisms; marine ecology; resource management; biological communities; environmental studies; ecosystems; intertidal environment; climate; remote sensing; photogrammetric surveys; storms; modelling; coastal erosion; sands; beaches; reefs; biota; seafloor topography; marine sediments; sediment dispersal; Algae; Biology; Climate change; monitoring; unmanned aerial vehicles
Illustrationsgeophysical images
ProgramOffshore Geoscience
Released2017 09 26
AbstractTo address increasingly complex research questions and global challenges (e.g. climate change and biodiversity loss), the development, refinement and need of new technology for monitoring marine coastal environments is increasing rapidly. Rapid advances in low-cost unmanned aerial vehicle (UAV) technology now allow for collection of centimetre resolution aerial imagery and topography suitable for assessing change in coastal ecosystems. We demonstrate the utility of UAV-based photogrammetry to quantify storm-driven sediment dynamics on sandy beaches and assess biotic communities on intertidal platforms by comparing on ground measurements to those that can be achieved with UAVs.
Aerial imagery collected before and after major storm events is ideal for the assessment of coastal landscape change. High-resolution aerial imagery and digital surface models were acquired and change-detection techniques used to quantify change in the beachface following a high-magnitude event. An average beach erosion of 12.24 m3/m with a maximum of 28.05 m3/m was observed, and the volume of sand cut from the beachface and retreat of the foredune are clearly illustrated. Following the storm event, erosion was estimated at 7,256± 504 m3 along 550 m of beach.
We also tested the utility of UAV remote sensing of intertidal reef platforms to traditional on-ground quadrat surveys for monitoring intertidal marine protected areas (MPA), and investigated the role of UAV derived geomorphological variables in explaining observed intertidal algal and invertebrate assemblages. Sub centimetre aerial imagery and digital surface models were acquired from intertidal reef platforms, and on-ground quadrat surveys collected intertidal biotic data for comparison. UAV's provided reliable estimates of dominant canopy-forming fucoid alga such as Hormosira banksii, however understorey species were often obscured and underestimated. UAV derived geomorphic variables showed elevation and distance to seaward platform edge explained 19.7% and 15.9% of the variation in algal and invertebrate assemblage observed.
We demonstrate the benefits of low-cost UAVs through rapid data collection, full coverage census, and generation of UAV geomorphic derivatives for characterising intertidal biological variation and sediment dynamics in the coastal zone.
Summary(Plain Language Summary, not published)
The sixteenth annual GeoHab Conference was held this year (2017) at the Waterfront Campus of the Nova Scotia Community College in Dartmouth, Nova Scotia, Canada.

Date modified: