Title | 3-D sediment mapping on the Niagara Peninsula |
Download | Download (whole publication) |
| |
Licence | Please note the adoption of the Open Government Licence - Canada
supersedes any previous licences. |
Author | Burt, A K |
Source | Regional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario open house; by Russell, H A J ; Ford, D; Priebe, E H; Geological Survey of Canada, Open File 8212, 2017 p. 5,
https://doi.org/10.4095/299761 Open Access |
Year | 2017 |
Publisher | Natural Resources Canada |
Meeting | Ontario Geological Survey and Geological Survey of Canada groundwater geoscience open house; Guelph; CA; March 1-2, 2017 |
Document | open file |
Lang. | English |
Media | on-line; digital |
Related | This publication is contained in Regional-scale groundwater
geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario open house |
File format | pdf |
Province | Ontario |
NTS | 30L/13; 30L/14; 30L/15; 30M/02; 30M/03; 30M/04; 30M/06 |
Area | Niagara Peninsula |
Lat/Long WENS | -80.0000 -78.7500 43.5833 42.7500 |
Subjects | surficial geology/geomorphology; hydrogeology; geophysics; modelling; groundwater; aquifers; groundwater resources; resource management; geophysical surveys; gravity surveys, ground; seismic reflection
surveys; geophysical logging; boreholes; core samples; observation wells; overburden thickness; bedrock topography; sediment distribution; glacial deposits; glacial landforms; drumlins; moraines; glaciolacustrine deposits; deltaic deposits; fans;
outwash; ice contact deposits; drift deposits; glaciofluvial deposits; proglacial lakes; postglacial deposits; eolian deposits; fluvial deposits; silts; clays; sands; gravels; geological history; glaciation; Wisconsinian glacial stage; ice movement;
deglaciation; ice retreat; buried valleys; Catfish Creek Till; Port Stanley Tills; Wentworth Till; Halton Till; Phanerozoic; Cenozoic; Quaternary |
Program | Groundwater Geoscience Aquifer Assessment & support to mapping |
Released | 2017 02 22 |
Abstract | In 2013, the Ontario Geological Survey (OGS) initiated a 3D sediment mapping project encompassing the Niagara Peninsula. As with other sediment mapping projects, the goals are to reconstruct the
Quaternary history of the area, build a 3D model of Quaternary deposits that form regional-scale aquifers and aquitards, and to define the internal characteristics of each sediment package. This study represents a multi-agency collaborative effort: a
regional ground gravity survey (6828 stations covering 3920 km2) and sediment logging of hand auger cores, natural sediment exposures, and 95 continuously cored boreholes have been completed by the OGS; the Geological Survey of Canada has completed
shallow seismic reflection surveys (48.1 km) and downhole geophysical logging (14 wells); and 28 monitoring wells have been installed and sampled by conservation authority and municipal partners. This presentation will focus on the results of the
2014-2016 OGS drilling program. The bedrock surface is characterised by southward-dipping strata forming 2 prominent escarpments. Ordovician shale lies below the Niagara Escarpment, Silurian dolostone, shale and gypsum between escarpments and
Devonian limestone and cherty limestone above the Onondaga Escarpment. The surface is incised by buried and partially buried bedrock valleys that range from broad and shallow to narrow and deep. Drift thickness is largely controlled by bedrock
topography; the thickest sediments are found within the bedrock valleys while the thinnest sediments are found at the escarpments. Drumlins, moraines, deltas and fans form locally thicker sediment accumulations. In the western part of the area
there is a thick older drift package of diamicton, glaciolacustrine silt and clay and sand to gravelly sand that can be correlated with the main Late Wisconsin Catfish Creek Till aquitard, late glacial Port Stanley Till aquitard, Grand River outwash
aquifer and Wentworth Till aquitard from adjacent 3D sediment mapping areas. The central and eastern portions of the study area are dominated by younger sediments. Coarse-textured ice-contact stratified drift, glaciofluvial sand and gravel and
glaciolacustrine sand that forms the Whittlesey aquifer was deposited during and after ice retreat. Thick glaciolacustrine silt and clay was then deposited in a series of proglacial lakes that ponded against the retreating ice front. In the northern
and eastern portions of the area these fine-textured glaciolacustrine deposits are separated into lower and upper Whittlesey aquitards by a 'sandwich' of sandy aquifers and muddy Halton Till, diamicton and glaciolacustrine sediments (Halton aquitard)
deposited during the late glacial ice advance out of the Lake Ontario basin. The uppermost unit is typically a thin aquifer composed of post-glacial to modern shoreline, aeolian and river sediments. This high-resolution stratigraphy forms the
framework for interpreting monitoring well data collected by conservation authorities and municipalities. The results of the extensive drilling program mean that the physical properties of aquifer and aquitard sediments can now be defined across
the region. This information, as well as seismic velocities obtained by downhole geophysical logging, will allow verification of seismic time sections into depth sections. It is anticipated that combining the results of drilling and geophysics will
provide the best possible definition of buried valley geometry and fill; an important objective of the project. The long-term impact of this study will be to provide conservation authority and municipal partners with an improved water resource
decision making tool. |
Summary | (Plain Language Summary, not published) Proceedings for Regional-Scale Groundwater Geoscience in Southern Ontario open house organized by the Ontario Geological Survey, Geological Survey of
Canada and Conservation Ontario Geoscientists. Open house is on 2017-03-01 and 02. Purpose is public engagement and dissemination of geoscience completed in Southern Ontario during the past year. |
GEOSCAN ID | 299761 |
|
|