GEOSCAN Search Results: Fastlink


TitleLimits of tidal energy dissipation by fluid flow in subsea formations
AuthorWang, K; van der Kamp, G; Davis, E E
SourceGeophysical Journal International vol. 139, no. 3, 1999 p. 763-768, (Open Access)
Alt SeriesGeological Survey of Canada, Contribution Series 1999025
PublisherOxford University Press (OUP)
Mediapaper; digital; on-line
File formatpdf
Subjectsmarine geology; structural geology; heat flow; permeability; tidal environments; tides; oceanic crust; porosity; marine environments; ocean tide loading; water loading; modelling; fractures
Illustrationsanalyses; formulae; cross-sections, stratigraphic; graphs
AbstractTidal loading causes fluid flow through permeable seafloor and between regions of contrasting elastic properties or porosity within subsea formations. We examine theoretically the dissipation of energy by these flows and its global significance as a
mechanism for tidal energy dissipation. Expressions are given for energy dissipation rates in layered formations due to vertical flow caused by tidal loading, but the results can be used to constrain dissipation by other flow patterns. We consider flow near the seafloor, in gas-bearing sediments, and in highly fractured permeable igneous crust. Energy dissipation by the first two mechanisms is negligibly small globally, although it may be locally significant under extreme conditions. Under favourable conditions, flow in fractured crust may have greater energy dissipation, but the total amount is limited by the thickness of the permeable layer. Based on our current understanding of subsea hydrogeology, tidally induced flow in subsea formations appears to make little contribution to the observed global tidal energy dissipation.